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Preface

Many problems are so complex that it is impossible to study them analytically.
For such problems, the use of numerical methods may be an interesting com-
plement to experimental investigations. During the last years, the development
of computational software has gained an increasing interest in industry. Indeed,
the use of those softwares by engineers may lead to a dramatic reduction of time
and cost in the development of new processes.

For example, for many years, the design of a die has been a work in which
the intuition of the engineer has played a major role. In many cases however,
intuition was not sufficient to design the die, and several attempts had to be done
to obtain an acceptable device. But, the construction of a die is an expensive
operation, and the lack of trustworthy methods to predict the corresponding
extrudate shape has often led to wasted time and money [Leg92]. In the years
to come, we may expect an increase in the use of computational software related
to the development of powerful and cheap computers.

Besides the development of computer simulation, research is done to better
understand the behaviour of complex fluids such as polymer solutions, polymer
melts, paints, rubbers,... Those studies are subjects of the science called “rheol-
ogy”. That science has led to the development of constitutive equations relating
stresses to deformations inside the material. But the use of those models often
gives rise to numerical difficulties. This is often the case for viscoelastic models.
Special numerical techniques have been (and are still being) developed to deal
with the computation of such viscoelastic flows.

But the results of rheological science and numerical developments are not
sufficient to give a complete solution to most of the problems of polymer pro-
cessing. Many problems are so complicated that a pragmatic approach must be
adopted. For example, the results of experimental observations and analytical
modelling may help the engineer to identify the most relevant parameters of the
process, and develop a simplified model reproducing most phenomena of interest
of the process.

This text is divided in two parts:

• At the beginning of this research, we thought that encapsulation was the
result of the development of an interfacial instability. This has led us to
investigate the stability of multilayer flows. Chapter 2 is devoted to that
study. In particular, we present the results of time-dependent numerical
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calculations of interfacial perturbations growing into the nonlinear do-
main. We show that it is possible to reproduce nonlinear flow regimes ob-
served experimentally like the bamboo waves in core-annular flows. Those
results are obtained with transient calculations of two-dimensional New-
tonian flows. But three-dimensional transient calculations are needed to
reproduce transient development of instabilities towards encapsulation.
The computational cost of those calculations is prohibitive. Therefore,
we investigate in chapter 3 another possible explanation of the encapsu-
lation: we study the influence of second normal stress difference on the
phenomenon. The advantage of that explanation is that it may be checked
with time-independent calculations. Finally, our calculated results are
compared to experimental observations for a realistic case of coextrusion.

• In chapter 4, we present the results of a numerical study of a filament
stretching device. We determine the conditions under which the device
produces trustworthy results and we propose an improved estimate of the
extensional viscosity. The effects of material parameters and of the initial
gap between the plates are investigated too. The calculations of chapter
4 have been done with FENE-CR model. However, some experimental
observations cannot be reproduced with the FENE-CR model. In chapter
5, we investigate the influence of the macromolecular structure on the rhe-
ological behaviour of polymer solutions in uniaxial extensional flows. We
propose a multimode model, and we show that it is suitable to reproduce
many experimental results.

Parts I and II are independent. Consequently, we introduce and conclude them
separately. In chapter 1, we present the theoretical background necessary to
understand the other chapters of the text.

Several results presented in this text have led to publications. Most results
given in chapter 4 have been first presented in

• R. Sizaire and V. Legat. Finite element simulation of a filament stretching
rheometer. Journal of Non-Newtonian Fluid Mechanics, 71:89–107, 1997.

The study of the influence of the macromolecular structure on the behaviour of
polymer solutions in extensional flows (chapter 5) will be published in

• R. Sizaire, G. Lielens, I. Jaumain, R. Keunings, and V. Legat. Influence
of non-linearity and dispersity on the behaviour of viscoelastic fluids in
rheometrical extensional flows. to be submitted to the Journal of Non-
Newtonian Fluid Mechanics, 1998.

Finally, the results of our investigation of the influence of second normal stress
difference on the encapsulation (chapter 3) will be given in

• R. Sizaire and V. Legat. Calculation of 3D encapsulation flows with the
finite element method. to be submitted to the Journal of Rheology, 1998.



Contents

Acknowledgements v

Preface ix

Contents xi

Glossary xv

1 Theoretical background 21

1.1 Conservation equations . . . . . . . . . . . . . . . . . . . . . 21
1.1.1 Conservation of mass . . . . . . . . . . . . . . . . . 21
1.1.2 Conservation of linear momentum . . . . . . . . . . 22
1.1.3 Conservation of angular momentum . . . . . . . . 22
1.1.4 Conservation of energy . . . . . . . . . . . . . . . . 22

1.2 Constitutive equations . . . . . . . . . . . . . . . . . . . . . 22
1.2.1 Newtonian fluids . . . . . . . . . . . . . . . . . . . 23
1.2.2 Non-Newtonian fluids . . . . . . . . . . . . . . . . 23
1.2.3 General principles for constitutive equations . . . . 25
1.2.4 Derivation of models from a molecular theory . . . 29
1.2.5 Dimensionless numbers for viscoelastic flows . . . . 33

1.3 Spatial discretization for viscoelastic flows . . . . . . . . . . 34
1.3.1 Galerkin method . . . . . . . . . . . . . . . . . . . 34
1.3.2 Interpolations . . . . . . . . . . . . . . . . . . . . . 35
1.3.3 Stress-splitting formulations . . . . . . . . . . . . . 36
1.3.4 Interpolations for 3D calculations . . . . . . . . . . 38
1.3.5 Upwinding . . . . . . . . . . . . . . . . . . . . . . . 38
1.3.6 Stream function . . . . . . . . . . . . . . . . . . . . 39
1.3.7 Solution of the nonlinear system . . . . . . . . . . 39

1.4 Time discretization . . . . . . . . . . . . . . . . . . . . . . . 40
1.5 Free surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.5.1 Kinematic conditions . . . . . . . . . . . . . . . . . 41
1.5.2 Surface tension . . . . . . . . . . . . . . . . . . . . 42
1.5.3 Remeshing techniques . . . . . . . . . . . . . . . . 43
1.5.4 Correction for time derivatives . . . . . . . . . . . 46

xi



xii CONTENTS

I Numerical calculation of multilayer flows 47

Introduction 49

2 Stability of multi-layer Newtonian flows 51

2.1 Linear stability of two-layer planar flows . . . . . . . . . . . 51
2.1.1 Dimensionless numbers . . . . . . . . . . . . . . . . 52
2.1.2 Orr-Sommerfeld equations . . . . . . . . . . . . . . 53
2.1.3 Solution of the eigenvalue problem . . . . . . . . . 55
2.1.4 Stability of two-layer Poiseuille flows . . . . . . . . 55

2.2 Transient simulations of periodic flows . . . . . . . . . . . . 60
2.2.1 Definition of the problem . . . . . . . . . . . . . . 60
2.2.2 Validation of the transient calculations . . . . . . . 63
2.2.3 Results analysis . . . . . . . . . . . . . . . . . . . . 68

2.3 Planar coextrusion in a channel . . . . . . . . . . . . . . . . 74
2.3.1 Inflow boundary conditions . . . . . . . . . . . . . 75
2.3.2 Periodic perturbations in time . . . . . . . . . . . . 76
2.3.3 Perturbation during a small interval of time . . . . 79

2.4 Literature review for core-annular flows . . . . . . . . . . . . 81
2.4.1 Dimensionless numbers . . . . . . . . . . . . . . . . 82
2.4.2 Linear stability . . . . . . . . . . . . . . . . . . . . 83
2.4.3 Experimental results . . . . . . . . . . . . . . . . . 86

2.5 Transient simulations of core-annular flows . . . . . . . . . . 88
2.5.1 Definition of the problem . . . . . . . . . . . . . . 90
2.5.2 Selection of parameters . . . . . . . . . . . . . . . . 91
2.5.3 Transient calculations and bamboo waves . . . . . 91

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3 Numerical calculations of encapsulation 99

3.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . 99
3.2 Encapsulation in channel flow . . . . . . . . . . . . . . . . . 103

3.2.1 Transient calculation with Reiner-Rivlin model . . 103
3.2.2 Static calculation of channel flows . . . . . . . . . . 105
3.2.3 Interpretation of results . . . . . . . . . . . . . . . 109

3.3 Numerical calculation of a 3D encapsulation . . . . . . . . . 110
3.3.1 Experiments of Han . . . . . . . . . . . . . . . . . 110
3.3.2 Rheological data . . . . . . . . . . . . . . . . . . . 110
3.3.3 Boundary conditions . . . . . . . . . . . . . . . . . 115
3.3.4 Interpolations . . . . . . . . . . . . . . . . . . . . . 118
3.3.5 The contact line problem . . . . . . . . . . . . . . 118
3.3.6 Compensation of pressure . . . . . . . . . . . . . . 121

3.4 Viscoelastic calculations . . . . . . . . . . . . . . . . . . . . 122
3.4.1 Strategy of resolution . . . . . . . . . . . . . . . . 122
3.4.2 Progressive increase of relaxation time . . . . . . . 123
3.4.3 Results for an Oldroyd-B calculation . . . . . . . . 127
3.4.4 Giesekus with a very large Newtonian component . 128



CONTENTS xiii

3.5 Reiner-Rivlin calculations . . . . . . . . . . . . . . . . . . . . 130

3.5.1 Strategy of resolution . . . . . . . . . . . . . . . . 130

3.5.2 Results for a first set of parameters . . . . . . . . . 131

3.5.3 Results for other values of the flow rate . . . . . . 132

3.5.4 Comparison with experiments . . . . . . . . . . . . 132

3.6 Giesekus and Reiner-Rivlin models . . . . . . . . . . . . . . 140

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Conclusions 143

II Numerical calculation of extensional flows 145

Introduction 147

4 The filament stretching device 149

4.1 Numerical simulation of the stretching device . . . . . . . . 149

4.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 153

4.2.1 Material parameters . . . . . . . . . . . . . . . . . 153

4.2.2 Dimensionless numbers . . . . . . . . . . . . . . . . 153

4.2.3 Stretching flow of a viscoelastic fluid . . . . . . . . 154

4.2.4 Stretching flow of a Newtonian fluid . . . . . . . . 156

4.2.5 Inertia, capillarity and gravity . . . . . . . . . . . . 158

4.2.6 Improved estimate of the extensional viscosity . . . 162

4.2.7 Comparison with experimental results . . . . . . . 164

4.3 Extensibility of the molecules . . . . . . . . . . . . . . . . . 166

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5 Molecular effects in extensional flows 173

5.1 Multimode approach . . . . . . . . . . . . . . . . . . . . . . 174

5.1.1 Fractal structure of polymer macromolecules . . . 174

5.1.2 FENE-PM model . . . . . . . . . . . . . . . . . . . 175

5.1.3 A “heuristic” multimode model . . . . . . . . . . . 176

5.2 Identification of a viscous stress . . . . . . . . . . . . . . . . 178

5.2.1 Experiments of Orr and Sridhar . . . . . . . . . . . 178

5.2.2 Relaxation with the multimode FENE-P model . . 178

5.2.3 Fit of a relaxation curve . . . . . . . . . . . . . . . 181

5.3 Birefringence experiment . . . . . . . . . . . . . . . . . . . . 184

5.3.1 Birefringence with the multimode model . . . . . . 184

5.3.2 Birefringence in the filament stretching device . . . 185

5.4 Comparison of multimode and FENE . . . . . . . . . . . . . 187

5.4.1 Differences between the models . . . . . . . . . . . 187

5.4.2 New representation of the multimode model . . . . 188

5.4.3 Selection of an extensibility distribution . . . . . . 188

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 190



xiv CONTENTS

Conclusions 193

III Appendices 195

A Numerical methods in Polyflow 197

A.1 Constraints in Polyflow . . . . . . . . . . . . . . . . . . . . . 197
A.2 Resolution of the nonlinear system . . . . . . . . . . . . . . 198
A.3 Adaptive time stepping algorithm . . . . . . . . . . . . . . . 199

B More information on multilayer flows 203

B.1 Base flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
B.1.1 Two layer planar Poiseuille flow . . . . . . . . . . . 203
B.1.2 Core-annular flow . . . . . . . . . . . . . . . . . . . 204

B.2 Nonlinear phenomena . . . . . . . . . . . . . . . . . . . . . . 205
B.2.1 Large amplitude perturbations . . . . . . . . . . . 205
B.2.2 Unstable higher order harmonics for n = 8 . . . . . 207
B.2.3 The peculiar case n =

√
m . . . . . . . . . . . . . . 207

C Contact line problem in Polyflow 211

C.1 Line dynamic condition with constraints . . . . . . . . . . . 211
C.1.1 Dirichlet boundary conditions and contact force . . 211
C.1.2 Contact forces and constraints . . . . . . . . . . . 212
C.1.3 Implementation of the line dynamic condition . . . 214

D More information on molecular effects 217

D.1 Fit with the sum of two exponentials . . . . . . . . . . . . . 217
D.2 Identification of a viscous stress . . . . . . . . . . . . . . . . 217

D.2.1 Transient viscous and elastic stresses . . . . . . . . 218
D.3 Origin of the hysteretic behaviour . . . . . . . . . . . . . . . 219

Bibliography 223



Glossary

In this glossary, we summarize the notations used in this text. We first present
the abbreviations, and then the general notations. Unfortunately, notations may
vary from chapter to chapter. This is mainly related to the fact that several
subjects have been investigated, and we try to use the standard notations in the
text. Therefore, some of the notations are introduced or redefined in sections
corresponding to the chapters.
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Chapter 1

Theoretical background

The mathematical modelling of flows is described by the theory of continuum
mechanics. The governing equations consist of conservation equations and con-
stitutive equations. The equations are derived from the principle of conservation
of mass, the principle of balance of linear momentum, and the principle of bal-
ance of energy. Constitutive equations are relating the stresses in the fluid to
the deformation history.

Whereas conservation equations apply whatever the material studied, the
constitutive equations depend from the material. In the section devoted to
constitutive equations, we introduce the generalized Newtonian model, and the
differential viscoelastic models.

The conservation and constitutive equations are used to calculate flows in
complex geometries. For such problems, it is generally not possible to calculate
an analytical solution of the governing equations. We use finite elements to
solve that kind of problems. The principles of the finite elements, and their
application to the calculation of viscoelastic flows is shortly presented. We also
describe how solutions on moving domains are calculated.

Of course this chapter is mainly a literature overview. Most information
presented here has been found in [Mac94, CAD+95a, Pur96, BHAC77, BCAH87,
Lar88, Bod94, Leg92, War96]. The preceding list is not exhaustive.

1.1 Conservation equations

1.1.1 Conservation of mass

Let ρ(x, t), v(x, t) be respectively the volumic mass and the velocity defined at
a material point of coordinates x and at time t. The principle of conservation
of mass is expressed as

Dρ

Dt
+ ρ∇ · v = 0,

where D/Dt denotes the material derivative and ∇· is the divergence. Usually,
most liquids may be considered as incompressible. This equation is usually called

21
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“continuity equation”. If the fluid is incompressible, the density is a constant,
and the continuity equation reduces to

∇ · v = 0. (1.1)

1.1.2 Conservation of linear momentum

The equation of motion arises from the principle of balance of linear momentum.
It is written as

ρ
Dv

Dt
= ∇ · σ + f , (1.2)

in which f is the resultant of volumetric forces, and σ(x, t) is the Cauchy stress
tensor.

1.1.3 Conservation of angular momentum

The balance of angular momentum requires the Cauchy stress tensor to be
symmetric:

σ = σT. (1.3)

1.1.4 Conservation of energy

The energy equation balances the internal energy of the fluid U , the viscous
dissipation σ : ∇v, the energy produced in the fluid r (for example by a chemical
reaction), and the energy transported by conduction q:

ρ
DU

Dt
= σ : ∇v + r −∇ · q. (1.4)

If we only consider the thermal energy (i.e. the energy corresponding to the
temperature of the fluid), and assuming that the conduction satisfies the Fourier
law q = −k∇T , equation (1.4) becomes

ρCp
DT

Dt
= ∇ · (k∇T ) + σ : ∇v + r. (1.5)

In equation (1.5), we have introduced the temperature T , the heat capacity Cp,
and the thermal conductivity k.

1.2 Constitutive equations

The Cauchy stress tensor may be separated into two contributions:

σ = −pI + T ,

in which p is the pressure, I is the unit tensor and T is the extra-stress tensor.
The conservation equations presented in section 1.1 are not sufficient to

determine the unknowns corresponding to the flow. Constitutive equations are
introduced to relate the history of a material point to its extra-stress tensor T .
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1.2.1 Newtonian fluids

For an incompressible Newtonian viscous fluid, the extra-stress tensor is given
by

T = 2ηD, (1.6)

in which η is the constant shear viscosity, and D is the rate of deformation
tensor

D =
∇v + ∇vT

2
.

Most small molecule liquids such as water, oil, gases obey the constitutive law
(1.6). But other liquids have a more complex behaviour. The study of those
liquids is the subject of the science called “rheology”.

1.2.2 Non-Newtonian fluids

The peculiar properties of non-Newtonian fluids may be observed in rheometrical
flows. We present here the main non-Newtonian effects in steady simple shear
flow, and in uniaxial extensional flow.

In order to simplify the following expressions, we introduce here the no-
tations for the components of velocity and coordinate fields: v = (u, v, w)

T
,

x = (x, y, z)
T
.

y

v

lower plate

upper plate

x

Figure 1.1: Steady Couette flow.

In steady simple shear flow (Figure 1.1), the velocity components are given
by

u = γ̇y, v = w = 0, (1.7)

in which γ̇ is the constant velocity gradient. The shear rate γ̇ may also be
defined for complex flows. It is related to the second invariant D : D of the
rate of deformation tensor D by

γ̇ =
√
2D : D.

Replacing the velocity field (1.7) in the constitutive relation (1.6), we find a
Cauchy stress tensor, the components of which satisfy the relations

σxy = ηγ̇, σxx − σyy = 0, σyy − σzz = 0. (1.8)
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In the case of non-Newtonian fluids, the measurements will give other results:

σxy = η(γ̇)γ̇, σxx − σyy = N1(γ̇), σyy − σzz = N2(γ̇). (1.9)

Three differences arise from the comparison of the Newtonian predictions (1.8)
and the non-Newtonian observations (1.9):

• The measured shear viscosity η(γ̇) depends on the shear rate γ̇. Usually
η(γ̇) is a monotonically decreasing function of the shear rate, and the
behaviour of the fluid is said to be “shear-thinning”. However, in some few
cases, the viscosity increases with the shear rate, and the fluid is “shear
thickening”.

• The first normal stress difference N1(γ̇) is positive for polymeric liquids.
The first normal stress difference gives rise to the most typical demonstra-
tions of non-Newtonian behaviours, such as the rod-climbing (or Weis-
senberg) effect, and the very large extrudate swelling at the exit of a die.

• The second normal stress difference N2(γ̇) it negative. That quantity
is difficult to measure for it is very small. (Approximately an order of
magnitude smaller than the first normal stress difference.)

For small values of the shear rate, the first normal stress difference is pro-
portional to γ̇2. This is the reason why, in the literature, the normal stress
coefficients ψ1(γ̇) and ψ2(γ̇) are often used instead of N1(γ̇) and N2(γ̇) to char-
acterize the normal stress differences. The normal stress coefficients are related
to the normal stress differences by

N1(γ̇) = ψ1(γ̇)γ̇
2, N2(γ̇) = ψ2(γ̇)γ̇

2.

z

y

x

Figure 1.2: Steady uniaxial extensional flow.

In steady uniaxial extensional flow (Figure 1.2), the components of the ve-
locity field may be written

u = ε̇x, v = − ε̇
2
y, w = − ε̇

2
z,

where ε̇ is the constant elongational rate. The non-vanishing stresses may be
written

σxx − σyy = σxx − σzz = ηE(ε̇)ε̇,
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in which we have introduced ηE(ε̇) the extensional viscosity.
For Newtonian fluids, Trouton demonstrated that ηE(ε̇) is a constant equal

to thrice the shear viscosity [Tro06]. For non-Newtonian fluids ηE is a function
of the extension rate ε̇. The qualitative behaviour of the extensional viscosity is
often dramatically different from the behaviour of the shear viscosity. For exam-
ple, the extensional viscosity of highly elastic polymeric fluids usually exhibits
a very large increase with the extension rate while the shear viscosity decreases
with the shear rate.

Another difference with Newtonian fluids is the “memory” of some non-
Newtonian fluids; because of their memory, such fluids behave like elastic ma-
terials when submitted to rapid deformations, and more like Newtonian fluids
for slow deformations. Such fluids are called “viscoelastic”.

A common way to measure the viscoelasticity is by stress relaxation. When
a polymeric liquid is submitted to a step increase in strain, the stress also
increases in a step, and then decreases exponentially [Mac94]. This behaviour
is often represented as a series combination of springs (elastic elements) and
dashpots (viscous elements) as represented in Figure 1.3.

η

ττ

k

Figure 1.3: Spring and dashpot representation of a viscoelastic fluid.

1.2.3 General principles for constitutive equations

The search for constitutive equations describing rheologically complex fluids is
the purpose of theoretical rheology. The constitutive equations must satisfy four
admissibility conditions:

• The principle of determinism of stress states that the stress in a non-
Newtonian body is determined by the history of the motion of that body
[TN65].

• The principle of local action states that the stress at a material point
is determined by the history of the deformation of an arbitrarily small
neighbourhood around that material point [TN65].

• The principle of coordinates invariance states that the constitutive equa-
tion must be independent of the frame of reference used to describe them.
Expressing the equations in consistent tensorial form will ensure that this
principle is automatically satisfied.

• According to the principle of invariance under superposed rigid body mo-
tion, the rheological equations must have a significance which is indepen-
dent of absolute motion in space [Old50]. If the equation is correct, any
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superimposed rigid body motion cannot affect the basic response of the
material.

Although there exists a plethora of constitutive equations in the literature,
we will only mention a few ones

Maxwell models

The one-dimensional linear equation of Maxwell is obtained by putting an
Hookean spring of constant k and a Newtonian dashpot of viscosity η in se-
ries (Figure 1.3). By noting γ̇ the strain rate of the series, τ will satisfy the
differential equation

τ + λτ̇ = ηγ̇, (1.10)

with λ = η/k a relaxation time.
The generalisation of relation (1.10) has to satisfy the principle of objectivity.

This leads respectively to the “upper-convected” and “lower-convected”Maxwell
models, given respectively by

T + λ
5

T = 2ηD, (1.11)

and

T + λ
4

T = 2ηD. (1.12)

In equations (1.11) and (1.12), the symbols 5 and 4 stand respectively for the
upper-convected and lower-convected derivatives defined by

5

T =
DT

Dt
−L · T − T ·LT, (1.13)

4

T =
DT

Dt
+ T ·L+L · TT. (1.14)

The upper-convected and lower-convected Maxwell models are also called rep-
sectively “Maxwell-B” and “Maxwell A”.

Both Maxwell-A and Maxwell-B have a constant shear viscosity η, and a first
normal stress difference quadratic in γ̇: N1(γ̇) = 2ηλγ̇2. The Maxwell-B model
predicts N2 = 0, but for the Maxwell-A model, we have N2 = −N1. This value
of second normal stress difference is much larger than what is experimentally
observed. Therefore, the Maxwell-A model is generally not considered. The
steady state extensional viscosity of Maxwell-B fluid is

ηE(ε̇) =
2η

1− 2λε̇
+

η

1 + λε̇
. (1.15)

With this formula, an infinite value of the extensional viscosity is obtained for
ε̇ = 1/2λ. For higher values of ε̇, the expression of the extensional viscosity
is meaningless. Indeed, for ε̇ > 1/2λ it is not possible to reach the steady
steady state value (1.15) by a transient calculation starting from vanishing initial
stresses because extensional stress grows towards infinity.
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Oldroyd-B model

In order to model the behaviour of a polymer solution in a Newtonian solvent,
the extra-stress tensor T is often split in two components: a viscoelastic one T V ,
and a purely viscous one TN . The components T V and TN satisfy respectively
the relations

T V + λ
5

T V = 2ηV D,

TN = 2ηND.

The constitutive equation of the Oldroyd-B model may also be written

T + λ
5

T = 2η

(

D + λR
5

D

)

, (1.16)

in which η = ηV + ηN is the constant shear viscosity and λR = ηNλ/η is a
retardation time. The normal stress differences of the Oldroyd-B model are
N1(γ̇) = 2ηV λγ̇

2 and N2 = 0. The steady extensional viscosity is given by

ηE(ε̇) =
2ηV

1− 2λε̇
+

ηV
1 + λε̇

+ 3ηN .

Johnson-Segalman model

The second normal stress difference may be related to the presence of a lower
convected derivative in the constitutive equations. The Johnson-Segalman mo-
del is defined by the constitutive equation

T + λT = 2η0D, (1.17)

in which T is a convex combination of the upper and lower convected derivatives:

T =

(

1− ξ

2

)

5

T +
ξ

2

4

T ,

ξ being a scalar parameter (0 ≤ ξ ≤ 2).
The Johnson-Segalman model predicts shear-thinning viscosity, first and sec-

ond normal stress differences:

η(γ̇) =
η0

1 + ξ(2− ξ)λ2γ̇2 ,

ψ1(γ̇) =
2λη0

1 + ξ(2− ξ)λ2γ̇2 ,

ψ2(γ̇) =
−ξλη0

1 + ξ(2− ξ)λ2γ̇2 .

For this model, N2/N1 = −ξ/2. The value ξ = 0.2, gives a ratio N2/N1 =
−0.1 corresponding to what is experimentally observed. The steady exten-
sional viscosity exhibited by the Johnson-Segalman model is equal to that of
the Maxwell-B model. The shear viscosity tends towards zero when the shear
rate tends towards infinity. This problem may be avoided by adding a purely
viscous component to the extra-stress tensor.



28 CHAPTER 1. THEORETICAL BACKGROUND

Phan-Thien-Tanner model

The extensional viscosity of the Johnson-Segalman model tends towards infinity
when the extension rate tends towards 1/2λ. The constitutive equation (1.17)
may be modified to avoid that problem:

exp

(

εPTTλ

η0

)

T + λT = 2η0D. (1.18)

Here again, a purely viscous component may be added to the extra-stress tensor.
In general, no analytical expression may be found for the viscosities and normal
stress differences with the PTT model.

Giesekus model

The constitutive equation defining the Giesekus model is given by

T + λ
5

T +
αGλ

ηV
T · T = 2ηV D. (1.19)

This model exhibits both first and second normal stress differences. With this
model, one obtains excellent fits in shear flows, but the extensional behaviour
is not very good.

Criminale-Ericksen-Filbey model

The Criminale-Ericksen-Filbey model is a generalisation of the second-order
fluid [BHAC77, Lar88]:

T = 2η0D − ψ10
5

D + 4ψ20D ·D. (1.20)

The generalisation is obtained by replacing the constants η0, ψ1,0 and ψ2,0 by
functions of the shear rate γ̇:

T = 2η(γ̇)D − ψ1(γ̇)
5

D + 4ψ2(γ̇)D ·D. (1.21)

The Criminale-Ericksen-Filbey model is not a viscoelastic model, for the model
exhibits no memory effect: the extra-stress tensor T at a given time only depends
on the velocity field at the same time. The model cannot be expected to predict
time-dependent phenomena.

Reiner-Rivlin model

The Criminale-Ericksen-Filbey model may be simplified by neglecting ψ1 in
(1.21). This leads to the Reiner-Rivlin model:

T = 2η(γ̇)D(v) + 4ψ2(γ̇)D(v) ·D(v). (1.22)
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This model may be easier to use for numerical calculations: equation (1.22)
only involves first order spatial derivatives of the velocity field. This allows us to
substitute T in the momentum equations with the right member of (1.22). With
such a substitution, the weak form of the momentum equation only involves first
order spatial derivatives of the velocity field.

As a comparison, the extra-stress tensor of the Criminale-Ericksen-Filbey
model, though exhibiting no memory effects, involves second order spatial de-
rivatives of v because of the upper-convected derivative of D. Therefore, to
calculate a complex flow with the finite element method with such a model, an
extra field D must be added to the variables of the model.

1.2.4 Derivation of models from a molecular theory

Several reasons justify the molecular approach. First, the rheological properties
of polymer solutions and polymer melts depend on the molecular architecture
of the constituent molecules (molecular weight, molecular weight distribution,
chain stiffness). Second, solute-solvent interactions can play a role in the mo-
tion of the polymers and affect their macroscopic behaviour. Third, in the
neighbourhood of fluid-solid interface, the motion of the polymer molecules is
restricted, with the result that wall slip can arise. Finally, useful relationships
can be derived between the rheological properties and other physico-chemical
properties, such as the diffusional, optical and electrical properties.

The theories deal either with dilute solutions or with concentrated solutions
and molten polymers. In dilute solutions theories, each particle interacts only
with the solvent and not with the other suspended particles, while in the con-
centrated fluid theories there are particle-particle interactions, which may form
molecular entanglements.

This section is mainly inspired from Bird et al. [BHAC77], and from the the-
sis of Bruno Purnode [Pur96]. We first present the Rouse chain and dumbbells
molecular models. Then we introduce the kinetic theory for elastic dumbbells.
In particular, we develop the macroscopic model corresponding to Hookean
dumbbells, and to finitely extensible dumbbells. We will not discuss the network
and reptation theories for concentrated solutions and polymer melts.

Let us remark that all constitutive models may be derived from molecular
theories. Thus the models presented in section 1.2.3 may also be justified by
molecular arguments, and actually, some of them have been derived from a
molecular theory. The only purpose of this section is to show how a macroscopic
constitutive equation may be derived from a kinetic theory.

Molecular models

Following the theory of Rouse [Rou53], polymer coil can be thought of as a se-
ries of spherical beads equally spaced and connected one to the next by springs.
Each spring models the elastic forces generated by a portion of the polymer
macromolecule called a submolecule (Figure 1.4). The polymer solution is suffi-
ciently dilute to allow us to make the assumption that each molecule is isolated
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from the others.

i− 2

ri

Spring

i− 1

Bead

i

i+ 1

i+ 2

Figure 1.4: The Rouse bead and spring model for a polymer macromolecule.

We will here only treat the case of two beads joined by a non-bendable
spring: the elastic dumbbell (Figure 1.5). The reason is that the dumbbell the-
ory qualitatively reproduces most features of the Rouse theory. The beads of
masses m are labeled with “1” and “2”. Their instantaneous location in space
are called r1 and r2. The configuration vector R = r2 − r1 specifies the in-
stantaneous distance between the beads centers and the angular orientation of
the dumbbells in space. There are n dumbbells per unit volume suspended in a
Newtonian solvent of viscosity ηN .

2r1

r2

R = r2 − r11

Figure 1.5: Elastic dumbbell composed of two beads connected by an elastic
spring.

Kinetic theory for dumbbells

The purpose of this section is to show how macroscopic consitutive equations
may be derived from a molecular theory. Thus, we do not present the theory
and results of stochastic calculations.
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In order to derive a macrosocopic model, a distribution function ψ(R, t)
is defined. This function gives the probability to find a dumbbell at a given
configuration R and for a given time t. The conservation equation for the
dumbbells may be written as a function of the distribution function ψ:

∂ψ

∂t
+

∂

∂R
· (ψṘ) = 0.

Taking into account the hydrodynamic drag forces F h, the brownian forces F b

and the connector force F c in the spring, an equation of change may be written
for the average < RR >:

5

< RR > +
4

ζ
< RF c >=

4kT

ζ
I,

in which we have introduced the notation

< B >=

∫

B(R)ψ(R, t)dR,

B(R) being a dynamical property depending on R, k the Boltzmann constant,
n the number of dumbbells per unit of volume and T the temperature. ζ is a
friction factor relating the hydrodynamic drag force on a bead to the relative
velocity of the bead and the solvent:

F h = ζ(v − ṙ).

The dumbbells contribute to the momentum equation by the force of their
connector spring, and by the amount of momentum they carry with them. This
results in a contribution to the extra-stress tensor given by

T V = n < RF c > −nkTI. (1.23)

The last expression is usually called the Kramers expression for the extra-stress
tensor [Kra44].

We will introduce the notations R for the end-to-end distance of the vector
R, and F such that

F c = F (R)R.

With these new notations, the evolution equation for the dumbbells and the
expression of the extra-stress tensor are given by

5

< RR > +
4

ζ
< F (R)RR >=

4kT

ζ
I, (1.24)

T V = n < F (R)RR > −nkTI. (1.25)

Up to this point, the theory has been developed for dumbbells with any kind
of elastic connector. Now we will characterize the connector force law. Although
a great number of spring types can be used, we will only consider the Hookean
and the Warner force laws.
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Hookean dumbbells

Let us first assume that the spring is Hookean, i.e. that the tension in the spring
is directly proportional to the separation of the beads:

F (R) = H.

Then, the Kramers expression for the stress tensor (1.23) gives:

T V = nH < RR > −nkTI,

whereas the evolution equation for < RR > is given by:

5

< RR > +
4H

ζ
< RR >=

4kT

ζ
I.

Eliminating < RR > from those equations leads to the following rheological
equation of state:

T V +
ζ

4H

5

T V =
nζkT

2H
D,

As one defines the characteristic time constant λ = ζ/4H and ηV = nζkT/4H,
this model is the well-known Maxwell-B fluid. By adding a purely viscous
component to the constitutive equation, one obtains the Oldroyd-B model.

Fene dumbbells

Let us now consider the Warner force law that avoids the unphysical feature of
infinitely extending dumbbells:

F (R) =
H

1−R2/R20
.

A spring with this force law will be linear for small extensions, but will get ever
stiffer as the spring is extended. Furthermore, the spring cannot be extended
beyond a separation R0. This dumbbell with limited extension is also called
Finitely Extensible Nonlinear Elastic (FENE) dumbbell. Replacing the Warner
force law in the evolution equation and the Kramers expression gives:

5

< RR > +
4H

ζ
<

1

1−R2/R20
RR >=

4kT

ζ
I, (1.26)

T V = nH <
1

1−R2/R20
RR > −nkTI. (1.27)

It is not possible to eliminate the average values, as it was done for the case of
Hookean dumbbells. However, replacing the average of the ratio by the ratio of
the averages as suggested by Peterlin [Pet66]:

<
H

1−R2/R20
RR >=

H

1− < R2/R20 >
< RR >,



1.2. CONSTITUTIVE EQUATIONS 33

leads to a tractable rheological equation of state. Indeed, defining a non-
dimensional configuration tensor A and a characteristic dumbbell length Re

as follows:

A =
3 < RR >

R2e
,

R2e =
3kT

F (Re)
,

and replacing in the equations 1.26 and 1.27 we obtain the following governing
equations for fields A and T V :

A+ λ(1− trA/L2)
5

A =
1− trA/L2

1− 3/L2
I, (1.28)

T V =
ηV
λ

(
1

1− trA/L2
A− 1

1− 3/L2
I), (1.29)

where L2 = 3R20/R
2
e is a measure of the extensibility of the dumbbells, λ is the

relaxation time, and ηV is the viscoelastic part of viscosity. The relaxation time
and the zero-shear viscosity are defined by:

λ =
ζ

4H
, ηV =

nζkT

4H
(1− 3/L2).

This fluid is called the FENE-P model [BDJ80]. This formulation, based on the
configuration tensor, is known to offer stable numerical properties [AH94]. The
fluid exhibits shear thinning behaviour, and for high shear rates, η is propor-
tional to γ̇−2/3. At high shear rates, the first normal stress difference scales as
γ̇2/3. The second normal stress N2 is vanishing. In extensional flow, the model
also exhibits an extensional thickening behaviour, and reaches a plateau at high
extension rates.

Chilcott and Rallison [CR88] proposed some further modifications in the
evolution for A in order to obtain a fluid with a constant viscosity in steady
shear flow:

A+ λ(1− trA/L2)
5

A = I. (1.30)

The equation giving the extra-stress tensor is identical to (1.29). Equations
(1.29) and (1.30) define the FENE Chilcott-Rallison model (FENE-CR). This
model shows a first normal stress difference that changes from quadratic to
linear behaviour as shear rate increases.

1.2.5 Dimensionless numbers for viscoelastic flows

Dimensionless numbers are generally used to characterize fluid mechanics prob-
lems. For example, the Reynolds number defined by

IR =
ρV L

η



34 CHAPTER 1. THEORETICAL BACKGROUND

in which V and L are characteristic velocity and length of the problem respec-
tively. IR characterizes the importance of inertia forces with respect to viscous
forces. It may be used to characterize both Newtonian and non-Newtonian
flows.

The viscoelasticity of a flow may be characterized by the Weissenberg num-
ber, We. It is defined as

We =
λV

L
,

in which λ is a characteristic relaxation time. It may be interpreted as a ratio
of normal stresses and shear stress.

For transient flow, The Deborah number De is often used. It is defined as
the ratio of a characteristic time λ of the fluid and a characteristic time of the
flow tc:

De =
λ

tc
.

1.3 Spatial discretization for viscoelastic flows

1.3.1 Galerkin method

In this section, we wish to describe the numerical problem of the simulation of
viscoelastic fluids. For convenience, we will limit ourselves to the steady flow
of a Maxwell fluid in a differential form, and to the finite element formulation.
The strong formulation of the system of partial differential equations is then
given by

T + λ
5

T = 2ηV D(v),

−∇ · p+∇ · T + f = 0,

∇ · v = 0.

We assume that the flow domain is discretized by means of a mesh of finite
elements and we approximate the viscoelastic stresses, the velocity and the
pressure by means of the finite expansions

T h =

NT
∑

i=1

T iφi,

vh =

Nv
∑

j=1

vjψj ,

ph =

Np
∑

k=1

pkπk,

in which φi, ψj and πk are the shape functions and T i, vj and pk are the
unknown nodal values.
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In order to calculate the nodal variables, the classical Galerkin procedure
imposes that the governing equations are orthogonal to the set of shape func-
tions. Finally, an integration by parts in the momentum equations is used to
yield the discrete problem:

∫

Ω

φi

(

T h + λ
5

T h − 2ηVD(vh)

)

dΩ = 0 i = 1 · · ·NT ,

∫

Ω

(

∇ψj ·
(

−phδ + T h
)

− ψjf
)

dΩ =

∫

∂Ω

ψjσ · nds j = 1 · · ·Nv,
∫

Ω

πk
(

∇ · vh
)

dΩ = 0 k = 1 · · ·Np,

(1.31)
where Ω is the domain on which the calculations are done, ∂Ω is the boundary
of the domain, n is the outward unit normal vector, and s is the curvilinear
coordinate along the boundary. This procedure reduces the continuity require-
ments imposed for the discrete velocity field and it allows the specification of
natural boundary conditions in terms of the contact force t = σ · n along the
boundary. Essential (or Dirichlet) boundary conditions also may be imposed
on the momentum equations (i.e. on the velocities). (More details on the im-
position of Dirichlet boundary conditions are given in section C.1). The set of
equations (1.31) defines formulation MIX-1 [KT77, CK80].

1.3.2 Interpolations

The precision of the solution obtained by the finite element method depends
on the choice of interpolant for the unknown fields. The observation of the
discretized equations (1.31) shows that the shape functions for the extra-stresses
and velocities must be continuous, but the shape functions for pressure only have
to be piece-wise continuous.

If we consider a classical mixed velocity-pressure formulation, the mixed
interpolation must satisfy a compatibility condition derived by Ladyzhenskaya,
Babuska and Brezzi [Bre74] in order to provide stable results. The popular
choice of quadratic velocity interpolation with a linear pressure may be justified
by the so-called LBB condition.

For the MIX-1 formulation, the first most widely used mixed interpolation,
in the case of quadrilateral elements was the following:

• The viscoelastic extra-stress was approximated by means of biquadratic
polynomials.

• The basis function for the pressure and the velocity fields are respectively
bilinear and biquadratic polynomials. This choice was directly inspired by
the LBB condition for the velocity-pressure formulation.

For this choice, all fields were continuous over the flow domain.
In the Newtonian limit λ → 0, and for a quadratic interpolation for the

extra-stresses, equations (1.31) are not equivalent to the classical Galerkin for-
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mulation of the Navier-Stokes equations. Moreover, Newtonian results of MIX-1
are oscillatory in flows with high gradients.

This fact has been used by Marchal and Crochet [MC86] in the special case
of rectangular elements. They found that a sufficient condition for the mixed
method to reproduce results identical to those of the velocity-pressure formula-
tion in the Newtonian case was that the discrete stress space must contain the
gradient of the discrete velocity space [MC87]. In particular, they modified the
stress interpolation as follows: the basic nine-nodes element for the velocity is
subdivided into 4× 4 bilinear subelements for the stresses (Figure 1.6). Such a
mixed finite element was found to give excellent results for the Newtonian case,
even near stress boundary layers. This particular element defines the so-called
4× 4 formulation which does not however break the high Weissenberg number
problem (i.e.the calculation of a flow with the finite element methods become
generally difficult when We is increased).

(b)(a)

Figure 1.6: Description of mixed interpolants for the finite element simulation
of viscoelastic flows: MIX-1 formulation (a) and 4× 4 element (b). The circles
represent the extra-stress nodes, the crosses the velocities and the squares the
pressure.

The main drawback of this method is its large computational cost. Other
methods like the EVSS formulation have been proposed to calculate viscoelastic
flows (section 1.3.3).

1.3.3 Stress-splitting formulations

In the limit of Newtonian flows (λ = 0), the MIX formulation in terms of (T ,v, p)
is not equivalent to the usual (v, p) formulation of the Stokes equations. When
we introduce the discretization, this fact has detrimental numerical implications
[Keu89] and can be circumvented with the following change of variables:

S = T − 2ηD(v).

A convected derivative of D(v) is then introduced in the constitutive equation,
involving second-order spatial derivatives of v. But, these derivatives can be
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eliminated by considering a (S,v, p,D) approximation. In order to define the
Elastic Viscous Split Stress formulation (EVSS), Rajagopalan et al. [RBA90]
introduced the modified stress tensor S and the rate of deformation D as addi-
tional unknowns, in the following way:

S = T − 2ηD,

D =
1

2
(∇v +∇vT).

(1.32)

The discretization of the EVSS formulation provides more stable and accurate
solutions than the discretization of the MIX formulation. Those good numerical
properties are due both to a new elliptic stabilizing term in the momentum
equation and to the least-square approximation of D(v) by a new variable D.

In order to further improve the numerical properties, Sun et al. [SPTT96]
proposed a modified version of the EVSS formulation to compute the flow of
the upper-convected Maxwell fluid. Their so-called reference viscosity scheme
formulation can be written as follows:

S = T − 2βD, (1.33)

where the reference viscosity β is a function of the coordinates and can be much
larger than η used in the usual EVSS formulation. In other words, the EVSS
formulation is a particular case of this formulation. They also proposed an
adaptive procedure to select β so as to obtain a viscous stress 2βD(v) at least
of the same order as the elastic stress S. This scheme defines the so-called
Adaptive Viscous Stress Splitting formulation (AVSS).

In order to introduce a similar elliptic stabilizing term in the momentum
equations for other models, Guénette and Fortin [GF95] considered a modified
stress splitting formulation. No change of variable is applied but the momentum
equations are modified as follows:

∇ · σ(T , p) + 2α∇ · (D(v)−D) = 0.

Obviously, D(v) − D vanishes in the continuous formulation, but it is intro-
duced here as a stabilization term in the momentum equations. It acts exactly
as the additional term generated by the change of variable of the EVSS formu-
lation. This is sometimes known as the Discrete Elastic Viscous Stress Splitting
formulation (DEVSS) or as the extended EVSS formulation of Guénettte and
Fortin.

All those formulations are particular cases of the following generic problem:

Find (S, v, p, D) such that

S + λ(
5

S + 2β
5

D)− 2(η − β)D(v) = 0,

∇ · (−pI + S + 2βD(v)) + 2α∇ · (D(v)−D) = 0,

∇ · v = 0,

D −D(v) = 0.
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Note that we only present the generic problem on the example of the Maxwell
model. But the generic formulation may easily be generalized to more compli-
cated constitutive equations.

The MIX formulation corresponds to the case α = β = 0 (the field D is then
not required and the field S becomes T ) and the standard EVSS method (1.32)
can be obtained with α = 0, β = η. We obtain the reference viscosity AVSS
formulation (1.33) with α = 0 and the extended EVSS formulation of Guénette
et al. with β = 0.

1.3.4 Interpolations for 3D calculations

There is no general mathematical theory that would give the choice of the ap-
proximations of the extra-stress tensor to be used with the various viscoelastic
formulations. In this thesis, we only use the DEVSS formulation for the 3D
coextrusion calculations (chapter 3).

An interesting property of the extended EVSS formulation is that, after
integration by parts of the momentum equation, the tensor D appears under
an algebraic form in the formulation. This allows us to use a discontinuous
interpolation for that field, and may lead to dramatic reduction of computational
cost, especially for 3D calculations.

Thus, for those calculations, we use a trilinear interpolation for the extra-
stress tensor. For the velocities and pressure, we use the mini-element of Fortin
[For81] (pressure is discontinuous and constant on the elements, velocities are
trilinear, but one adds a normal degree of freedom at the center of each face).
For the tensor D we use the same type of interpolation as for the pressure.

Note that for the 3D Newtonian and Reiner-Rivlin calculations, the mini-
element of Fortin is also used for the velocity and pressure discretization.

1.3.5 Upwinding

It is possible to demonstrate that the classical Galerkin formulation is optimal
for the discretization of elliptic equations. But the equations governing vis-
coelastic flows are hyperbolic. The streamline upwind Petrov-Galerkin (SUPG)
method has been developed by Brooks et al. [BH82] in order to provide sta-
ble and accurate formulation for advection-diffusion equations. This technique
consists in replacing the weight function ψi of the constitutive equation by

ψ̂i = ψi + kv · ∇ψi,

where k is a scalar of the order of the finite element size h.
Numerical experiments and mathematical analysis establish that, for a given

velocity field, the SUPG is more accurate and stable. However, when Marchal
and Crochet have incorporated the 4×4 interpolation and the SUPG technique
for the problem of the full set of viscoelastic equations, they have obtained
oscillatory extra-stress and velocity at relatively small values of the Weissenberg
number, even if interesting accurate results can be obtained for the flow around
a sphere or in undulated channels.
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Therefore, Marchal and Crochet used the SU method. In this approach,
the additional term of the test function affects only the purely advective term
vh · ∇T h of the upper convective derivative. The SU method has very good
stability properties, but is only first-order accurate. In other words, the artificial
diffusion of the SU algorithm introduces an error proportional to the size of
elements. But with SU, solutions have been obtained at very high Weissenberg
numbers using Maxwell and Oldroyd-B fluids in flows with and without stress
singularities [CAD+95a].

1.3.6 Stream function

For two-dimensional calculations, if the divergence of velocity field vanishes
(incompressible flow), the components of the velocity may be derived from a
scalar stream function ψ. For example, for a planar flow, we have

u = ψ,y and v = −ψ,x,

in which {x, y}T are the coordinate components, and {u, v}T the velocity com-
ponents.

This function is often used to visualize flows, for isolines of the stream func-
tion given by the solution of

ψ(x, y) = constant

are parallel to the direction of velocity vectors.
It easily can be shown that ψ is the solution of a Poisson equation. Indeed,

by defining the vector
{

ψ,x

ψ,y

}

=

{

−v
u

}

,

and calculating its divergence, one obtains

∇2ψ = −v,x + u,y. (1.34)

A similar transformation may be done for axisymmetric flows.
An interesting characteristic of equation (1.34) is that ψ is the solution of an

elliptic Poisson equation. This ensures that isolines are generally smooth, even
when the velocity field presents wiggles.

1.3.7 Solution of the nonlinear system

The discretization of the governing equations with the finite element method
leads to a system of nonlinear equations. Two basic approaches have been
adopted to solve the nonlinear system:

• In the coupled approach, the equations are solved simultaneously for the
whole set of variables. The advantage of this approach lays in the possi-
bility of deriving Newton-Raphson’s or Picard’s equations for solving the
nonlinear problem (section A.2). Its disadvantage is the relatively high
computer cost caused by fairly large number of variables.
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• In the decoupled approach, the calculation of the viscoelastic extra-stress is
performed separately from the flow kinematics: from known velocity and
pressure, one calculates the extra-stress by integrating the constitutive
equations; then, the kinematics is updated by solving the conservation
equations for a given extra-stress. With this approach, the number of
variables is much lower than in the coupled approach, but the number
of iterations is also much larger because it does not enjoy the quadratic
convergence properties of Newton’s method (section A.2).

1.4 Time discretization

In this section, we present the methods used to discretize the equations in time.
This discretization in time has to be done if a time derivative appears in the
governing equations. A general form of the time dependent equations is

M(z)ż+ g(z) = 0, (1.35)

where z is the vector containing the nodal values, M is the mass matrix, and
g(z) is a vector. An initial condition is given to the solution at time t0:

z(t0) = z0.

The time discretization of equation (1.35) consists in finding numerical ap-
proximations zn of the unknown theoretical solution z(t) at discrete times tn
defined by t0 < t1 < · · · < tn < · · · < tN .

In this thesis, we only use algorithms derived from the θ methods. Equation
(1.35) also may be written

ż = −M−1(z)g(z). (1.36)

The discretization of this equation with a θ scheme gives

zn+1 − zn
∆tn+1

= −θM−1(zn+1)g(zn+1)− (1− θ)M−1(zn)g(zn), (1.37)

in which ∆tn+1 = tn+1−tn is the time step and θ controls the implicit character
of the time discretization.

The values θ = 0 and θ = 1 give the explicit and implicit Euler schemes re-
spectively. Both Euler schemes are first order schemes. The value θ = 1/2 gives
the second order Crank-Nicolson method. The value θ = 2/3 gives a first order
scheme called “Galerkin method”. More informations about the implementation
of the θ methods are given in section A.3.

It is important to know whether a transient method is stable or not. For
advection equations, it has been shown that among the θ methods, the criterion
of stability is θ ≥ 1

2 . This means that Cranck-Nicolson, Galerkin and implicit
Euler schemes are unconditionnally stable; but explicit Euler scheme is uncon-
ditionnally unstable. This is related to the fact that the time discretization
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of an advection equation with the explicit Euler schemes introduces an artifi-
cial negative diffusion. with Galerkin and implicit Euler schemes, the artificial
diffusion is positive. Numerical diffusion vanishes for θ = 1

2 . Consequently,
the Cranck-Nicolson scheme is adpated to the study of stability by transient
integration.

1.5 Free surfaces

In this thesis, we calculate flows on geometries with free surfaces or interfaces.
Kinematic conditions are used to calculate the motion of those moving bound-
aries. In order to avoid overdistorded elements inside the computational domain,
the motion of the boundaries must be propagated inside the mesh. This is done
with an appropriate remeshing technique.

1.5.1 Kinematic conditions

The kinematic condition expresses the condition that fluids do not flow across
free surfaces or interfaces. The simplest way to express such a condition is the
following:

(v − ẋ) · n = 0, (1.38)

in which v is the fluid velocity, ẋ is the time derivative of eulerian coordinates
and n is the normal vector to the moving surface. Thus, n depends on the
coordinates on this surface. The difference v− ẋ is the fluid velocity relative to
the mesh. By mutliplying this relative velocity by the normal to the boundary
we obtain the flow rate through this surface. Thus, we impose this surface
flow rate to vanish at each point along this surface. Equation (1.38) may be
discretized using a Galerkin formulation for two- and three-dimensional flows.
It will be referred to as “surface kinematic condition” in the next chapters. For
time independent flows, ẋ = 0 and (1.38) reduces to v · n = 0.

To calculate the motion of a free surface, another type of kinematic condition
called “line kinematic condition” may be used; the mesh of the moving surface
is divided in lines. Each line is constrained to be parallel to the velocity (Figure
1.7). It is possible to show that this method is optimal because the kinematic
condition leads to hyperbolic equations. The use of this method requires the
structure of the mesh to be such that it can easily be divided in lines parallel to
the main direction of flow. Thus, it also requires a good knowledge of the main
direction of flow prior to its calculation. Those two characteristics of the line
kinematic condition restrict its use to the calculation of free surface extrusion
flows.

Let us define a unit vector τ tangent to a mesh line with

τ =
xs

||xs||
,

in which s is a curvilinear coordinate following the mesh line. The equation
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Direction of flow

Figure 1.7: Schematic representation of the line kinematic condition.

defining the line kinematic condition is

c− cττ = 0, (1.39)

where c is a quantity closely related to the fluid velocity and cτ is its component
tangential to the line (cτ = c · τ ). Note that τ , and thus cτ are functions of the
nodal coordinates on the line. Thus equation (1.39) involves the coordinates as
unknowns.

An interesting feature of the line kinematic condition is that it allows the
use of a continuation method on a parameter ζl. This allows to progressively
model the kinematic condition. This is done by calculating vector c with

c = ζlv + (1− ζl)||v||τ ref, (1.40)

in which v is the fluid velocity, and τ ref is a reference vector tangential to the
initial mesh line. By putting ζl to 0, c remains parallel to the initial mesh
line, and the line does not move. By progressively increasing ζl, the kinematic
condition is introduced in the equation. for ζl = 1 the full kinematic condition
is obtained.

1.5.2 Surface tension

Along a free surface, the modelling of surface tension leads to a normal force
applied on the interface:

fn = γ

(

1

R1
+

1

R2

)

n, (1.41)

in which n is the normal vector to the surface, R1 and R2 are the principal
radii of curvature of the surface, and γ is the surface tension coefficient. For an
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axisymmetric flow around x axis, the principal radii of curvature are given by

R1 =

[

1 +

(

∂h

∂x

)2
]

3

2

/

∂2h

∂x2
,

R2 = −h
[

1 +

(

∂h

∂x

)2
]

1

2

.

For a planar flow, the formula giving R1 remains unchanged and R2 becomes
infinite.

After discretization and integration by parts of equation (1.41), two different
types of boundary conditions may be imposed to the free surface: Dirichlet or
Neumann boudary conditions. In some case, the attachment position of the free
surface on the wall is known a priori. This is the case when the free surface
attaches to a corner. For such cases, Dirichlet conditions are imposed. In other
cases, the attachment point is the result of a dynamic equilibrium of contact
forces. For such situations, one usually imposes a force equal to surface tension
and oriented towards a specified direction (Figure 1.8). Such problems are
discussed in [Rus80, Keu86, Leg92].

γV
Free surface

Wall

θ

Wall

Free surface

Figure 1.8: Different types of boundary conditions that may be imposed at the
attachment point of the free surface and a wall.

Note that it is often easier to derive the discretized equations of surface
tension from a minimization principle, the function to minimize being the energy
associated with the total free surface: E = γS.

1.5.3 Remeshing techniques

In order to avoid overdistortion of elements, a remeshing technique is used to
propagate the motion of the free surface into the mesh. In this section we only
mention the method of spines, a remeshing based on a Thompson transformation
and a remeshing based on the minimization of the deformation energy of a grid
(called Optimesh in Polyflow).
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Method of spines

Let us first define a height function h(x, t) representing the displacement of free
surface nodes towards a specified direction d. The kinematic condition may
be expressed as a function of h. In the method of spines, a one dimensional
finite element approximation is constructed for the height function h on the
free surface (Figure 1.9). We only present the method here for two-dimensional
calculations, but it is easy to generalize the calculation to three-dimensional
flows.

d

node m
y

x

h(x, t)

Figure 1.9: Schematic representation of the method of spines.

The mesh is then divided into “slices”. In a given slice, the nodal displace-
ment of each node is a linear function of the nodal displacement of the free
surface node of that slice. It may thus be expressed as a function of h:

∆xmn(t) = cmnhm(t)dm, (1.42)

in which m is a nodal index in the horizontal direction of slicing, m is a nodal
index in the vertical direction, and cmn is a constant parameter related to the
initial position of the node (m,n) in the undeformed mesh.

In general, dm may be updated at each time step (or continuation step).
For example, the vector may be calculated at the beginning of each time step in
order to have it normal to the mesh before any other calculation. But dm may
also be determined only once at the beginning of the calculation; that is what
we are doing in chapter 2 where director vector d is vertical or horizontal.

Note that an interesting advantage of the method of spines is that each
coordinate unknown is a linear function of one single variable hm(t). Thus
equation (1.42) may be expressed with constraints. This leads to an important
decrease of the computational cost of the remeshing for coordinate unknowns
are eliminated of the system before the Gaussian elimination. Therefore, the
method of spines is a very cheap remeshing technique. But its use is limited to
problems in which the deformation of the mesh is not too large.
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Remeshing based on a Thompson transformation

When we use the Thompson transformation, we take advantage of the smooth-
ing properties of an elliptic operator [TWM85, TWM82]. As a first step, a
generalised coordinate system is defined on the moving domain. For a two-
dimensional domain, one builds a mapping between the two-dimensional domain
and a “parent element”. In Polyflow the use of Thompson remeshing is limited
to problems in which the domain to remesh as a quadrilateral topology, and the
parent element is square.

g2 = 1 g2

g2 = −1

x

y

g1 = 1g1 = −1 g1

Figure 1.10: Schematic representation of the mapping between the domain to
remesh and the square parent element for the Thompson transformation.

The mapping is obtained by solving

∇2g = 0,

in which g is a vectorial function {g1, g2}T of the coordinates. For that problem,
Dirichlet boundary conditions are imposed on the components of g. Those
conditions are indicated in Figure 1.10. The components of g may be interpreted
as generalised coordinates. In Figure 1.10, they are such that the parent element
is a square centered on the origin, and of side length 2.

The field g contains information on the initial distribution of the elements
in the domain. This information is used to calculate the motion of the nodes
when the boundaries of the domain move. More precisely, we solve

∇2g = 0,

but here, the field g is a data of the problem, and the coordinates are the
unknowns. Thus we search {x, y}T such that relation ∇2g = 0 is conserved.
This leads to a nonlinear set of equations with coordinate as unknowns. This
set of equations is solved with a Newton-Raphson algorithm. The equations
involving the nodal coordinates along the boundaries are cancelled and replaced
by essential boundary conditions (fixed coordinates), or tangential Thompson
remeshing and kinematic conditions, or any other equation depending on the
pecularity of the problem being solved.
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The main advantage of the Thompson remeshing resides in the fact that the
elliptic operator has smoothing properties on the deformation of the mesh. This
allows very large deformations. But the computational cost of the method also
is larger than that of the method of spines.

Remeshing based on an energetic approach

In the “Optimesh” remeshing technique of Polyflow, the mesh is considered as a
deforming elastic grid. An elastic response corresponds to the angular deforma-
tion of the corners, of the diagonal of elements, and of the side of elements. An
energy may be associated with the deformation of the grid, and the remeshing
is the result of the minimization of that energy: one solves an elastic problem.

Some parameters allow the user to modify the contribution of the various el-
ements of the elastic response (angular, diagonal or side deformations). It is also
possible to consider the initial grid as a reference for the elastic deformations.

More details about this remeshing technique may be found in [Ber91].

1.5.4 Correction for time derivatives

Special care must be taken in the evaluation of time derivatives when the
Galerkin procedure is used on a moving grid algorithm. For example, the ma-
terial derivative of the extra-stress tensor becomes

DT

Dt
= Ṫ + (v − ẋ) · ∇T .

If the discretization is done on a fixed mesh, ẋ = 0, and the material deriva-
tive reduces to its usual expression. Another special case corresponds to the
Lagrangian approach in which nodes are fluid particles and v = ẋ. In that case
the material derivative reduces to the time derivative [Keu86].
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Introduction

Coextrusion is the simultaneous extrusion from a single die of two or more
homogeneous melts which form a laminar structure. This process has gained
wide recognition as an approach to achieving unique product performance by
combining properties of different materials, and lower costs through combination
of different valued materials. Coextrusion simplifies the manufacturing process
by avoiding many of the processing steps required by conventional lamination
and coating processes. Moreover, coextrusion enables the production of very
thin layers and ensures better layer adhesion since the melts are brought together
under pressure inside the die [CAD+95b].

Two different phenomena related to the multilayer character of the flows are
often observed during coextrusion:

• In many cases, the extrudate exhibits wavy interfaces related to interfacial
instabilities occuring in the die. Those instabilities may be caused by the
combination of inertia and viscosity differences. But in most situations,
the elasticity of the fluids is responsible for the problem [SK92, WK93a,
WK93b].

• The less viscous fluid exhibits a tendency to surround the more viscous
one. This phenomenon may eventually lead to a total “encapsulation” of
the more viscous fluid. The phenomenon, represented in Figure I.1, has
been investigated both experimentally and theoretically by a large number
of researchers [SB73, SB75, Eve75].

Interfacial instabilities and encapsulation have also been observed in multi-
layer Newtonian flows. For such flows, it has been shown that the viscosity ratio
of the fluids plays a major role. Indeed, as has been observed for polymer melts,
the less viscous fluid encapsulates the more viscous one. The encapsulation phe-
nomenon may have both positive and negative consequences. In oil pipelining,
water is sometimes added to oil. Then water migrates to the walls while oil
gathers in the core layer. In such a configuration of oil and water, water acts as
a lubricant and reduces the energy losses in the pipe [JR93a, JR93b]. However,
when polymer melts are coextruded in dies, encapsulation is generally an unde-
sirable phenomenon. For example, in order to produce multilayer film products,
the multilayered structure flows trough a runner and then a coat hanger die
which spreads the layer to the desired width. If encapsulation phenomenon
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Figure I.1: Progressive encapsulation during coextrusion in a rectangular die.
The lower part of the picture represents successive cross-sections in the die
(From [CAD+95b]).

occurs in the flow, the layered structure presents serious nonuniformities. Gen-
erally, the material near the edges of the die must be cut from the film and
discarded or recycled [THV+93].

For multilayer Newtonian flows, it has been shown that a thin layer of small
viscosity fluid is favorable to the stability of long wavelength perturbations (see
section 2.1). This phenomenon is called “thin-layer effect”. It is interesting to
relate the thin-layer effect to the encapsulation phenomenon. The fact that
the more viscous fluid is encapsulated by the less viscous one has suggested a
principle of minimization of the viscous dissipation to explain the encapsulation.
This principle states that the flow tends to reach a configuration in which the
viscous dissipation is minimal for a fixed total flow rate. When encapsulation
occurs, the layer of small viscosity fluid acts as a lubricant and reduces viscous
dissipation. In the thin-layer effect, the small viscosity fluid acts precisely in the
same way: it seems that the lubricated flow is “satisfied” with its configuration,
and does not want to be“disturbed”(at least by large wavelength perturbations)
if the lower viscosity layer is thin.

This relation between the thin-layer effect and the encapsulation has sug-
gested to some authors the idea that encapsulation could arise from the transient
development of an interfacial instability in the stratified flow. In order to check
that assumption, we study in chapter 2 the stability of multilayer Newtonian
flows. In particular, we investigate the behaviour of perturbations growing into
the nonlinear domain. This allows us to calculate the bambbo waves nonlinear
flow regime. But, that investigation only gives us some elements of answer, for
it is difficult to use the methods described in that chapter to simulate a three-
dimensional encapsulation flow. We investigate in chapter 3 another possible
explanation of the phenomenon for viscoelastic coextrusion flows. We study the
effect of normal stress differences on encapsulation. Results of three-dimensional
static calculations with non-Newtonian models are presented and discussed.



Chapter 2

Stability of multi-layer

Newtonian flows

In order to know whether encapsulation may be a result of the growth of interfa-
cial instabilities into the nonlinear domain, we calculate the transient evolution
of perturbed flows with a finite element method. The results of Yiantsios and
Higgins [YH88b] are used to select the parameters of our transient periodic pla-
nar calculations. In order to validate our modelling of the problem, we first try
to reproduce the results of linear stability analyses with transient calculations
of periodic flows. Then we investigate the behaviour of perturbations growing
in the nonlinear domain.

However, infinite periodic perturbations in space do not model realistically
the perturbed flows observed experimentally. Indeed, the dies (or pipes) have
always a finite length, and perturbations are never infinitely periodic in space.
Therefore, we also model the more realistic problem of the coextrusion of two
fluids in a planar channel. In that case, the perturbation is imposed on the flow
rates and is a periodic function of time.

Finally, a realistic model problem is obtained with an axisymmetric periodic
flow rather than a planar one. This allows us to calculate some nonlinear flow
regimes like the “bamboo waves regime”.

2.1 Linear stability of two-layer planar flows

The first significant study of the linear stability of two-layer shear flows has been
done by Yih [Yih67]. He studies two layer Couette and Poiseuille flows slightly
perturbed with long wavelength periodic perturbations. In other papers devoted
to the study of the stability of multilayer flows, short, long and intermediate
wavelength perturbations are considered.

To study the linear stability of flows, the equations governing the linear
behaviour of the perturbations have to be written. In our case, for periodic
perturbations, those equations are the “Orr-Sommerfeld equations”.
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x

lower plate

interface

upper plate

fluid 1

fluid 2

y

Figure 2.1: Two layer planar Poiseuille flow between parallel plates.

The Orr-Sommerfeld equations result in an eigenvalue problem. Eigen solu-
tions may be calculated analytically for small or large wavelength perturbations
by asymptotic analysis. For intermediate wavelengths, numerical methods have
to be used to solve the eigenvalue problem. The stability or instability of a
perturbation is related to the eigenvalue of its fastest growing mode.

The results obtained by Yiantsios and Higgins are probably the most com-
plete to this date [YH88b]. They are presented and discussed at the end of the
section.

2.1.1 Dimensionless numbers

To calculate the flow, the Navier-Stokes are solved in both layers with appro-
priate boundary and interfacial conditions. The momentum equations in both
layers are

ρ1
Dv1

Dt
= −∇p1 + µ1∇2v1 + ρ1g,

ρ2
Dv2

Dt
= −∇p2 + µ2∇2v2 + ρ2g,

in which the subscripts 1 and 2 denote the upper and lower layers respectively.
In all our calculations, gravity g is parallel to the y axis and oriented towards
the negative direction. The velocity field also must satisfy the incompressibility
equation in both layers: ∇ · v1 = 0 and ∇ · v2 = 0.

To adimensionalize the governing equations, we use the thickness and the
density of the upper layer, and the velocity u0 at the interface in the base flow.
We also introduce the viscosity ratiom = µ2/µ1 and the density ratio ζ = ρ2/ρ1.

The other dimensionless numbers arising from the adimensionalisation are
the thickness ratio n = d2/d1, the Reynold number IR = ρ1u0d1/µ1, the adi-
mensional gravity G = d1g/v

2
0 , the Froude number F = (ζ − 1)gd1/u

2
0 and a

number expressing the interfacial tension S = γ/ρ1d1u
2
0.

To simplify the notations, we use identical symbols for the velocities and the
pressure in the dimensional and dimensionless equations. The dimensionless
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momentum equations governing the flow are

Dv1

Dt
= −∇p1 +

1

IR
∇2v1 +G, (2.1)

ζ
Dv2

Dt
= −∇p2 +

m

IR
∇2v2 + ζG, (2.2)

The kinematic condition is used to calculate the motion of the interface.
Along the interface, the velocity field and the tangential component of the shear
stress are continuous. Surface tension results in a discontinuity of the normal
component of the Cauchy stress tensor.

Let us note that the adimensionalisation is done differently in some studies.
For example, Hooper and Boyd distinguish various definitions of the Reynolds
number and surface tension parameters in their analysis [HB87].

2.1.2 Orr-Sommerfeld equations

In the Poiseuille flow represented in Figure 2.1, the y component of the velocity
is zero. We use u, v and p to denote respectively the x and y components of the
velocity, and the pressure in the base flow. A small amplitude perturbation is
added to the base flow. Thus

û = u+ u′, v̂ = v′, p̂ = p+ p′, (2.3)

in which û, v̂ and p̂ give the perturbed flow and u′, v′ and p′ denote the per-
turbation quantities. The perturbation satisfies the incompressibility equation.
This allows us to use a stream function ψ such that u′ = ψ,y and v′ = −ψ,x.
We then assume that the perturbation is periodic in the x direction and that it
depends exponentially on t. We have

{ψ, p′} = {φ(y), f(y)} exp iα(x− ct),

in which α is the wave number of the perturbation, and c is its complex wave
speed: c = cr + ici. α is always positive, and proportional to the inverse of the
wavelength of the perturbation. The stability or instability of the perturbation
is related to the sign of the imaginary part ci: if ci > 0, the amplitude of the
perturbation increases with t, otherwise the perturbation is stable. Actually,
αci is the growth rate of the perturbation.

By substituting (2.3) in the dimensionless momentum equations (2.1-2.2),
and neglecting the terms pertaining to the base flow and the quadratic terms in
perturbation quantities, the momentum equations may be expressed in terms of
φ and f :

iα{(u− c)φ,y − u,yφ} = −iαf +
1

IR
(φ,yyy − α2φ,y),

α2(c− u)φ = f,y +
iα

IR
(φ,yy − α2φ).
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The elimination of f from the two last equations produces the well-known Orr-
Sommerfeld equation

φ,yyyy − 2α2φ,yy + α4φ = iαIR{(u1 − c)(φ,yy − α2φ)− u1,yyφ}. (2.4)

(We add the subscript 1 to the velocity u to denote the fact that the equation
is relative to the upper layer of the flow.) A similar equation is derived for the
lower layer:

χ,yyyy − 2α2χ,yy + α4χ =
iαζIR

m
{(u2 − c)(χ,yy − α2χ)− u2,yyχ}, (2.5)

in which χ(y) is the eigenfunction defined in the lower layer and corresponds to
φ(y) in the upper layer.

Boundary and interfacial conditions are imposed to equations (2.4) and (2.5).
The velocity is imposed along the upper and lower plates. Therefore, the per-
turbation velocity vanishes along the upper and lower plates. This leads to the
conditions

φ(1) = φ,y(1) = 0, (2.6)

χ(−n) = χ,y(−n) = 0. (2.7)

The continuity of u′ and v′ on the interface respectively involve the conditions

φ,y(0)− χ,y(0) =
φ(0)

c− u(0) (u2,y(0)− u1,y(0)) , (2.8)

φ(0) = χ(0). (2.9)

The continuity of shear stress is expressed by

φ,yy(0) + α2φ(0) = m{χ,yy(0) + α2χ(0)}. (2.10)

The normal stress equilibrium at the interface leads to the condition

− iαIR{(c− u(0))φ,y(0) + u1,y(0)φ(0)} − (φ,yyy − α2φ,y(0))
+ 2α2φ,y(0) + irαIR{(c− u(0))χ,y(0) + u2,y(0)χ(0)}

+m(χ,yyy − α2χ,y(0))− 2α2mχ,y(0) = iαIR

(

1

F 2
+ α2S

)

φ

c− u(0) . (2.11)

Equations (2.4), (2.5), (2.6), (2.7), (2.8), (2.9), (2.10) and (2.11) define an
eigenvalue problem in which c is the eigenvalue and {φ(y), χ(y)} is the eigen
function.



2.1. LINEAR STABILITY OF TWO-LAYER PLANAR FLOWS 55

2.1.3 Solution of the eigenvalue problem

Asymptotic solution of the eigenvalue problems

Exact analytical solutions of the eigenvalue problem described in section 2.1.2
are generally very difficult to obtain. Instead, numerical or approximate so-
lutions are often calculated. In this section, we present analytical solutions
obtained for very small or very large wavelength perturbations. The principle
of the method used to solve the eigenvalue problem is briefly described. More
information about the resolution of the eigenvalue problem for small or large
wavelength perturbations can be found in [Yih67, JR93a].

For long wavelength perturbations, α ¿ 1. Thus the solution may be ex-
panded in an infinite power series:

φ(y) = φ0(y) + αφ1(y) + α2φ2(y) + . . .

χ(y) = χ0(y) + αχ1(y) + α2χ2(y) + . . .

c = c0 + αc1 + α2c2 + . . .

These approximations of the solution are substituted in the equations defining
the eigenvalue problem. Thus, those equations also may be written as a power
series of α.

A zeroth order estimate of the eigensolution is obtained by neglecting all
terms containing α2 or higher orders of α. The first estimate of c, c0, is purely
real and may be interpreted as a translation velocity of the perturbation. A
better estimate of c is obtained by adding the second order powers of α in
the equations. To the first estimate, we add the correction αc1, in which c1 is
imaginary and related to the stability or instability of the perturbation. The
estimate of the eigen solution may still be improved by adding higher order
terms in the expansion.

For small wavelength perturbations (αÀ 1), the principle of the asymptotic
resolution of the eigenvalue problem is the same, except that φ, χ and c are
expanded in negative power series of α.

Numerical solution of the eigenvalue problems

Yiantsios and Higgins use a numerical technique to discretize the eigenvalue
problem [YH88b, YH87a]. The functions φ(y) and χ(y) are discretized with a
finite element technique. This leads to an algebraic eigenvalue problem. For
small wavenumbers and moderate Reynolds numbers, the problem is solved
using a QR algorithm. For large wavenumbers or Reynolds numbers, the eigen
problem becomes numerically “stiff”, and special numerical techniques are used
to calculate some eigensolutions of the problem [YH88a].

2.1.4 Stability of two-layer Poiseuille flows

We present here some results of linear stability analyses of the two layer planar
Poiseuille flow represented in Figure 2.1 (velocity and pressure fields in the base
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flow are given in section B.1.1). Most results given in this section have been
published by Yiantsios and Higgins [YH88b, YH87a]. They solve the eigenvalue
problem numerically to estimate the eigenvalues c for a wide range of wavenum-
bers α, and of the parameters IR, S, F ,... Then, the selection of the eigenvalue
presenting the largest imaginary part allows them to determine whether the flow
is stable for all perturbations or not.

We summarize here the conclusions of Yiantsios and Higgins about the influ-
ence of thickness ratio, wavenumber of the perturbations, inertia, surface tension
and gravity. We present neutral stability curves in plane (n,α) (i.e. thickness
ratio vs. wavenumber). Stable and unstable areas are denoted with “s” and “u”.
Neutral stability curves separate stable and unstable areas.

Neutral stability curves and thin layer effect

In Figure 2.2, the neutral stability curves are plotted for the case m = 20,
IR = 10, and for vanishing gravity and surface tension. The first neutral stability
curve is the straight line of equation n =

√
20 =

√
m. This corresponds to a

base flow in which the velocity gradient vanishes at the interface.

Figure 2.2: Neutral stability curve for a planar Poiseuille flow (m = 20, ζ = 1,
IR = 10, F = 0 and S = 0). Stable and unstable areas are denoted with “s” and
“u”. (From [YH88b]).

For large wavelengths (small values of α), the perturbations are unstable
for small values of n, and stable if n is sufficiently large (i.e. n >

√
m). This

behaviour has also been predicted in other studies devoted to large wavelength
perturbations [Yih67, Hoo89, Hoo85, APW90, HB87]: a thin layer of low vis-
cosity fluid is favorable to the stability of the flow, while a thin layer of high
viscosity fluid has a destabilizing influence. This phenomenon is usually called
“thin-layer effect”.

However, for short wavelengths (α > O(1)), the second neutral stability
curve tends asymptotically towards the straight line n =

√
m, and the per-
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turbations become unstable for all values of the thickness ratio save n =
√
m.

Here again, this result is confirmed by asymptotic analyses for short wavelength
perturbations [HB83, HB87].

Influence of Reynolds number

Yiantsios and Higgins investigate the influence of the Reynolds number on neu-
tral stability curves (Figure 2.3). Unfortunately, for the presentation of their
results, they do not adopt conventions identical to those of Figure 2.2: the re-
lation between the diagrams of Figures 2.3 and 2.2 is given by IR′ = IRn/m,
α′ = αn, n′ = 1/n and m′ = 1/m. The points a′ and b′ in Figure 2.3 correspond
to a and b in Figure 2.2.

Figure 2.3: Influence of the Reynolds number on the neutral stability curve for a
planar Poiseuille flow (m = 0.05, ζ = 1, IR = 10, F = 0 and S = 0). Only one
neutral stability curve is affected by modification of inertia. (From [YH88b].)

The neutral stability curves is not altered appreciably by a change of Rey-
nolds number, at least for small values of IR (IR < 20). In its linear asymp-
totic analysis, Yih predicts a growth rate proportional to the Reynolds number
[Yih67]. According to this result, the neutral stability curves should not be
modified by a change of Reynolds number, and this agrees more or less with the
results of Yiantsios and Higgins.

Influence of surface tension

The influence of surface tension is investigated in Figure 2.4. An increase of S
has always a stabilizing influence on the flow. This stabilizing influence decreases
rapidly as α → 0 (long wavelength perturbations). But for short wavelength
perturbations, the stabilizing effect of surface tension is very important. A small
quantity of surface tension is sufficient to create an interval of thickness ratios
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[ninf, nsup] for which all periodic perturbations are stable. If S → 0, the interval
reduces to the single value n =

√
m.

Figure 2.4: Influence of surface tension on the neutral stability curves for a
planar Poiseuille flow (m = 20, ζ = 1, IR = 10, F = 0). An increase of
surface tension always has a stabilizing effect on interfacial instabilities. (From
[YH88b].)

The fact that surface tension always has a stabilizing influence on the flow
may easily be explained. Surface tension may be interpreted as a membrane
stretched along the interface. The tension of the membrane acts in such a
way that the membrane tries to shrink and minimize its area. For a slightly
perturbed interface, the interface may be described by a function y = h(x)
giving the vertical displacement as a function of x. Then, surface tension results
in a normal force given by fn = −γh,xx which acts on the interface to make
it as flat as possible. For our periodic perturbations, the interface is given by
functions like h(x) = h0 exp iα(x − ct), and we find fn(x) = −α2γh(x). This
explains the strong dependence of the stabilizing effect of surface tension on the
wavelength of the perturbations.

Influence of gravity

In Figures 2.5 and 2.6, the neutral stability curves are plotted for various values
of the Froude number. Gravity stabilizes the flow if the upper layer has a lower
density than the lower layer. This can be understood intuitively: the flow tries
to reach a configuration that minimizes the potential energy.

Here again, if gravity is stabilizing, an interval of thickness ratios [ninf, nsup]
on which the flow is stable for all wavelength perturbations appears. If the upper
layer has a higher density, gravity is destabilizing and short wavelength pertur-
bations are unstable for all values of n. The influence of gravity on the neutral
stability curves does not seem to depend on the wavelength of the perturbations.
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Figure 2.5: Stabilizing influence of the gravity for a planar Poiseuille flow when
the lower layer has a higher density (m = 20, IR = 10, S = 0, F > 0 and
ζ > 0). (From [YH88b].)

Figure 2.6: Destabilizing influence of the gravity for a planar Poiseuille flow
when the upper layer has a higher density (m = 20, IR = 10, S = 0, F < 0 and
ζ < 0). (From [YH88b].)
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2.2 Transient simulations of periodic flows

We have seen in section 2.1 how the linear stability or instability of a periodic
perturbation of planar Poiseuille flow may be predicted by the resolution of an
eigenvalue problem. Another way to predict the behaviour of a perturbation
consists in calculating its transient evolution by numerical computation of the
perturbed flow. By calculating the transient evolution, we also may predict the
behaviour of the perturbed flow when perturbation grows into the nonlinear do-
main. The present section is devoted to the transient simulation of periodically
perturbed Poiseuille flows.

2.2.1 Definition of the problem

In this section, we briefly describe how the periodicity of the problem is mod-
elled and how the parameters of the transient calculations are selected. Then
we explain how the initially perturbed flow is obtained and we describe the
boundary conditions used for the transient calculations.

Periodicity constraints

All the stability results presented in section 2.1 have been obtained for infinite
flows in the x direction. The flows are also periodic in that direction. This
allows us to limit our study to a computational domain of finite length.

In order to model the periodicity of the flow, appropriate constraints are
imposed on the velocities and on the interface position. The constraints are
given by

v(0, y) = v(L, y),

h(0) = h(L).

Only the pressure field is not strictly periodic. This is due to the fact that,
in the base flow, the pressure field is a linear decreasing function of x. However,
the perturbation on the pressure field ∆p = p− p0 (in which p0 is the pressure
in the base flow) is a periodic function of x.

We do not impose any condition on the pressure field: it seems that the
absence of periodicity conditions on the pressure does not affect sensibly the
behaviour of the flow. The periodicity condition for the pressure seems to be
implicitly included in the velocity and interface periodic conditions.

Selection of the parameters

To select the parameters of our transient calculations, we use the results obtained
by Yiantsios and Higgins for their stability analysis [YH87a]. In Figure 2.7, we
plot the isostability curves corresponding to the case m = 20, ζ = 1, IR = 10,
F = 0 and S = 0.

For the first calculation, we select a point such that the growth rate αci = 0.4.
For α = 0.4, this gives n ≈ 2.63. We also select parameters for a neutrally stable
perturbation (α = 0.4 and n =

√
20 =

√
m), and for a stable perturbation
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¯¯¯

⊕⊕⊕

Figure 2.7: Isostability curves for a planar Poiseuille flow (m = 20, ζ = 1,
IR = 10, F = 0 and S = 0). (From [YH87a].) The symbols ¯ represent the
points selected for the transient calculations, and the ⊕ are the corresponding
second harmonics. αci is the growth rate of the perturbation.
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(α = 0.4 and n = 8). The selected perturbations are located in Figure 2.7 with
the symbols ¯. The second harmonic corresponding to each perturbation are
represented with ⊕.

Initially perturbed flow

We wish to calculate the evolution of a slightly perturbed flow for the case
IR = 10, m = 20, ζ = 1, n = 2.63 and α = 0.4. Gravity and surface tension are
not taken into account. For our choice of parameters, we try to obtain a growth
rate close to 0.01. The length of the wave corresponding to the wave number
α = 0.4 is L = 2π/α = 5π. L is also the length of our computational domain
(Figure 2.8).

d1 = 1 x

y

L = 5π

d2 = 2.63

Figure 2.8: Dimensions of the undisturbed computational domain (α = 0.4 and
n = 2.63).

The fluids are pushed between the two plates by a normal force per unit
of surface, fn applied on the left boundary of the domain. To calculate the
force, we use the equation (B.1) giving the horizontal pressure gradient in the
undisturbed Poiseuille flow. The pressure drop between the inlet and outlet
sections is given by the product of the pressure gradient and of the distance
between the two sections. Indeed the force applied on the left boundary must
compensate the pressure drop due to the viscous dissipation. So

fn = −∂p
∂x
L =

2(m+ n)

n(n+ 1)
L.

Our first calculations are done on a relatively coarse mesh of 130 elements
(Figure 2.9).

Several possibilities may be used to add a small perturbation to the base
flow. Our initial flow is obtained by the resolution of the stationnary Navier-
Stokes equations on a deformed mesh, obtained by the addition of a sinusoidal
perturbation on the interface position. The function h(x) describing the position
of the interface is initially given by

hinit(x) = Ainit sin(αx),
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mesh
nnode=
nvert=
nbd  =
nelem=

567
154
92
130

xmin  =
xmax  =
ymin  =
ymax  =

 0.000E+00
 0.157E+02
-0.263E+01
 0.100E+01 *

Figure 2.9: Unperturbed mesh for the first calculations (α = 0.4 and n = 2.63).

where Ainit is the initial amplitude of the perturbation. In our example Ainit =
0.1. The perturbation of the interface is propagated in the two layers of the
mesh with a remeshing rule such that only the y coordinate of the nodes is
changed (Figure 2.10).

Inertia terms are neglected for the computation of the initial flow. Along
the interface, we impose that the fluids flow tangentially to the fixed interface
(vn = 0). The positions of all nodes of the mesh are imposed.

mesh
nnode=
nvert=
nbd  =
nelem=

567
154
92
130

xmin  =
xmax  =
ymin  =
ymax  =

 0.000E+00
 0.157E+02
-0.263E+01
 0.100E+01 *

Figure 2.10: Slightly initial deformed mesh for the transient calculation. (α =
0.4, n = 2.63 and Ainit = 0.1.)

Time-dependent calculations

Once the initial perturbed flow has been obtained, the transient evolution may
be calculated. The problem is nearly identical to the problem solved to obtain
the perturbed flow, except that inertia terms are taken into account in the
momentum equations, and that a kinematic condition is used to calculate the
motion of the interface. A summary of the boundary conditions is presented in
Figure 2.11.

To propagate the deformation of the interface in the mesh, we use a method
of spines. The direction of motion of the nodes is vertical (parallel to y). A
Crank-Nicolson scheme is used for the time discretization. The time-step is
fixed at 0.25.

2.2.2 Validation of the transient calculations

We present in this section the results obtained for the peculiar case n = 2.63
and α = 0.4. For that perturbation, a growth rate αci = 0.01 is expected. We
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Dh

Dt
= 0

fn

v = 0

h(L) = h(0)
v(L) = v(0)

v = 0

Figure 2.11: Boundary conditions for the transient simulation of the perturbed
flow.

explain how the calculated results may be analysed and interpreted. For exam-
ple, we describe how the amplitude of the perturbations is calculated. We also
check whether our results are converged by performing numerical calculations
with other meshes and time-stepping schemes, and with various values of the
time step.

Results for n = 2.63

The observation of the interface gives information on the behaviour of the per-
turbation (Figure 2.12). The shape of the interface is plotted for three values
of the time t. In order to make the observation easier, three consecutive space
periods have been plotted for each time. It can be seen that the perturbation
moves from the left to the right at an approximately constant speed.

*

*

*

Figure 2.12: Horizontal movement of the perturbation. The shape of the inter-
face is given at t = 250, t = 252.5 and t = 255 (α = 0.4, n = 2.63, m = 20,
IR = 10, Ainit = 0.1 and ∆t = 0.25).

The perturbation amplitude is an increasing function of time (Figure 2.13).
At the beginning of the calculation, the shape of the interface remains approx-
imately sinusoidal. But for larger values of t (approximately 200), the upper
part of the interface flattens. The departure from a sinusoidal shape proves that
for large amplitudes, the behaviour of the perturbation no longer is linear.

The velocity and pressure fields are represented for t = 225 in Figure 2.14.
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POLYFLOW (3. 3. 0) / step # 60, time =  0.3000000E+02                       

mesh
nnode=
nvert=
nbd  =
nelem=

567
154
92
130

xmin  =
xmax  =
ymin  =
ymax  =

 0.000E+00
 0.157E+02
-0.263E+01
 0.100E+01 *

t = 30

POLYFLOW (3. 3. 0) / step #120, time =  0.6000000E+02                       

mesh
nnode=
nvert=
nbd  =
nelem=

567
154
92
130

xmin  =
xmax  =
ymin  =
ymax  =

 0.000E+00
 0.157E+02
-0.263E+01
 0.100E+01 *

t = 60

POLYFLOW (3. 3. 0) / step #180, time =  0.9000000E+02                       

mesh
nnode=
nvert=
nbd  =
nelem=

567
154
92
130

xmin  =
xmax  =
ymin  =
ymax  =

 0.000E+00
 0.157E+02
-0.263E+01
 0.100E+01 *

t = 90

POLYFLOW (3. 3. 0) / step #240, time =  0.1200000E+03                       

mesh
nnode=
nvert=
nbd  =
nelem=

567
154
92
130

xmin  =
xmax  =
ymin  =
ymax  =

 0.000E+00
 0.157E+02
-0.263E+01
 0.100E+01 *

t = 120

POLYFLOW (3. 3. 0) / step #300, time =  0.1500000E+03                       

mesh
nnode=
nvert=
nbd  =
nelem=

567
154
92
130

xmin  =
xmax  =
ymin  =
ymax  =

 0.000E+00
 0.157E+02
-0.263E+01
 0.100E+01 *

t = 150

POLYFLOW (3. 3. 0) / step #360, time =  0.1800000E+03                       

mesh
nnode=
nvert=
nbd  =
nelem=

567
154
92
130

xmin  =
xmax  =
ymin  =
ymax  =

 0.000E+00
 0.157E+02
-0.263E+01
 0.100E+01 *

t = 180

POLYFLOW (3. 3. 0) / step #420, time =  0.2100000E+03                       

mesh
nnode=
nvert=
nbd  =
nelem=

567
154
92
130

xmin  =
xmax  =
ymin  =
ymax  =

 0.000E+00
 0.157E+02
-0.263E+01
 0.100E+01 *

t = 210

POLYFLOW (3. 3. 0) / step #480, time =  0.2400000E+03                       

mesh
nnode=
nvert=
nbd  =
nelem=

567
154
92
130

xmin  =
xmax  =
ymin  =
ymax  =

 0.000E+00
 0.157E+02
-0.263E+01
 0.100E+01 *

t = 240

Figure 2.13: Development of the perturbation of a planar Poiseuille flow (α =
0.4, n = 2.63, m = 20, IR = 10, Ainit = 0.1 and ∆t = 0.25).

NORM. PROP. VARIABLES:
UV 1
UV 2

DF. SCL.=
USR SCL.=

 0.138E+01
 0.100E+01

*
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mesh
nnode=
nvert=
nbd  =
nelem=

588
165
132
130

variable : P   
icase =
iax   =
min.  =
max.  =

1
0
-0.749E+01
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nlines=
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8
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 0.100E+01

*

Figure 2.14: Representation of the flow. The upper part gives the velocity field,
and in the lower part, iso values of the pressure are plotted (α = 0.4, n = 2.63
m = 20, IR = 10, Ainit = 0.1 and t = 225).



66 CHAPTER 2. STABILITY OF MULTI-LAYER NEWTONIAN FLOWS

Estimate of the perturbations amplitude

Assuming that the behaviour of the perturbation is linear, we may estimate its
amplitude A by the use of the following set of equations:

h1 =
α

π

∫ 2π
α

0

h(x) sinαxdx,

h2 =
α

π

∫ 2π
α

0

h(x) cosαxdx,

A =
√

h21 + h22.

If the interface departs from a sinusoidal shape, other informations are
needed to describe its shape. The expansion of h(x) in a Fourier series will
also provide harmonics, the order of which is larger than one. The amplitude of
the higher order harmonics present in the perturbation may be estimated with
the following equations

hp1 =
α

π

∫ 2π
α

0

h(x) sin pαxdx, (2.12)

hp2 =
α

π

∫ 2π
α

0

h(x) cos pαxdx, (2.13)

Ap =
√

(hp1)
2 + (hp2)

2, (2.14)

in which p denotes the harmonic number. However, the amplitude A1 of the
first harmonic gives interesting informations if the perturbation is small. To
simplify the notations we write A = A1.

The amplitude as a function of time is represented in Figure 2.15. We also
plot the function 0.1 exp(t/100) giving the amplitude we would obtain for a
perturbation growing exponentially. For small amplitudes, the two curves are
nearly parallel. But for higher values of t, the growth rate of the perturbation
progressively decreases. That is normal, for the amplitude of the perturbation
cannot exceed 1, the thickness of the upper layer. Thus, the decrease of the
growth rate is a nonlinear phenomenon related to the flattening of the upper
part of the interface observed in Figure 2.13. More information on nonlinear
phenomena in perturbed flows is given in section B.2.

Influence of the time-stepping scheme

For the time discretization, we use a Cranck-Nicolson scheme. In Figure 2.16,
we present the curves of the amplitude of the perturbation as a function of time
for the Cranck-Nicolson scheme and for the Galerkin scheme with various values
of the time step.
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Figure 2.15: Amplitude of the perturbation as a function of time (α = 0.4,
n = 2.63, m = 20, IR = 10, Ainit = 0.1 and ∆t = 0.25).

Gal. (∆t=0.125)
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Figure 2.16: Influence of the time-stepping scheme on the calculation of the
amplitude of the perturbation (α = 0.4, n = 2.63, m = 20, IR = 10 and Ainit =
0.1).
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It is well known that the Galerkin scheme has damping properties when
used to discretize hyperbolic equations. We see that for ∆t = 0.5 or ∆t = 0.25,
the use of the Galerkin scheme leads to a predicted amplitude decreasing with
time. Only for small values of the time step, an increasing amplitude may be
obtained. Very small time steps should be used to produce a curve close to
the Cranck-Nicolson curves. A similar comparison could be made between the
Cranck-Nicolson scheme and the implicit Euler scheme, the damping properties
of which are still more important than that of the Galerkin scheme.

Small differences may also be observed between the amplitude curves calcu-
lated with a Cranck-Nicolson scheme. But the differences are very small and we
are satisfied with the curves obtained with ∆t = 0.25.

Influence of the mesh

We calculate the growth rate of the perturbation on a more refined mesh in
the x direction. The coarse and refined meshes are plotted in Figure 2.17 for
comparison.

POLYFLOW (3. 5. 0) / step #900, time =  0.2250000E+03                       

mesh
nnode=
nvert=
nbd  =
nelem=

567
154
92
130

xmin  =
xmax  =
ymin  =
ymax  =

 0.000E+00
 0.157E+02
-0.263E+01
 0.100E+01 *

POLYFLOW (3. 5. 0) / step #***, time =  0.2250000E+03                       

mesh
nnode=
nvert=
nbd  =
nelem=

4347
1134
372
1040

xmin  =
xmax  =
ymin  =
ymax  =

 0.000E+00
 0.157E+02
-0.263E+01
 0.100E+01 *

Figure 2.17: Comparison of the coarse and refined meshes used for the transient
calculations (α = 0.4, n = 2.63 m = 20, IR = 10, Ainit = 0.1 and t = 225).

The growth rates obtained with both meshes are plotted in Figure 2.18. The
two curves are nearly superposed and cannot be distinguished. The maximum
relative difference between the two curves is approximately 0.25 %. We conclude
that the results obtained with the coarse mesh are good. However all ampli-
tude curves given in the rest of the chapter have been plotted from results of
calculations done with refined meshes.

2.2.3 Results analysis

In this section, we analyse the results of the transient calculations. We first
calculate the transient evolution of perturbed flows for other values of the thick-
ness ratio n. The interpretation of those results is not straightforward, because
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Figure 2.18: Influence of the mesh on the calculation of the amplitude of the
perturbation (α = 0.4, n = 2.63, m = 20, IR = 10, Ainit = 0.1 and ∆t = 0.125).
The two curves are nearly superposed and cannot be distinguished.

unexpected oscillations are observed in amplitude curves, and higher order har-
monics also may be observed in the flow. Those observations have lead us to
study the behaviour of higher order harmonics present in the flow. We also
investigate the consequences of interference between the various modes simul-
taneously observed in the perturbed flow.

Results for other values of the thickness ratio n

Transient calculations of initially perturbed flows also may be done for other
values of the parameters defining the base flow. For example, we plot in Figure
2.19 the amplitude of the perturbation as a function of time for various values of
the thickness ratio n. The value n =

√
20 =

√
m is such that the linear stability

analyses predict a neutral stability (i.e. a zero growth rate of the perturbation).
For n = 8 we expected a decreasing curve (and obtained it, at least for small
values of t).

However, because of the small amplitude of the perturbation, we expected
straight lines for n =

√
20 and n = 8, but we obtain wavy curves. The amplitude

curves do not seem to vary with modification of the mesh and time step.
Another surprising phenomenon may be observed for n =

√
20, the interface

does not keep its sinusoidal shape. It appears clearly in Figure 2.20, where two
local maxima of the position of the interface may be seen. This proves that
smaller wavelength periodic modes are present in the perturbed flow.

Note that the results presented in section 2.2.2 for n = 2.63 were in good
agreement with linear stability analyses results and physical intuition. But, at
first sight, the results for n =

√
20 and n = 8 are in contradiction with the

theoretical results given in section 2.1.
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Figure 2.19: Amplitude of the perturbation as a function of time for various
values of n (α = 0.4, m = 20, IR = 10, Ainit = 0.1 and ∆t = 0.25).

*

Figure 2.20: Configuration of the layers for t = 185 (α = 0.4, m = 20, IR = 10,
m =

√
20, Ainit = 0.1 and ∆t = 0.25).



2.2. TRANSIENT SIMULATIONS OF PERIODIC FLOWS 71

Now, the questions that arise are: how do the smaller wavelength pertur-
bations appear in the perturbed flow? How can we explain the oscillations of
amplitude curves in Figure 2.19? Can those problems be related to discretiza-
tion or modelling errors? If a satisfying answer may be found for the first two
questions, the third question will be answered too. In order to explain the sur-
prising behaviour of the perturbed flow, we investigate the behaviour of higher
order perturbation harmonics.

Observation of higher order harmonics

The amplitude of the higher order harmonics present in the flow are estimated
with equations (2.12-2.14). We plot in Figure 2.21 the amplitude of the second
harmonic as a function of time for three values of n.

n = 8

n =
√
20

n = 2.63

t

A2

10009008007006005004003002001000

0.1

0.01

0.001

0.0001

Figure 2.21: Amplitude of the second harmonic of the perturbation as a function
of time for various values of n (α = 0.4, m = 20, IR = 10 and Ainit = 0.1).

The examination of Figures 2.19 and 2.21 leads to the following observations:

• The amplitude of the second harmonic is zero for t = 0 and grows rapidly
towards a finite value for t <∼ 15.

• For n = 2.63 and n = 8, the oscillations seem to be associated with small
amplitude of the corresponding harmonic. They have a large frequency.

• For n =
√
m, the amplitude oscillates at a small frequency around an

approximately constant value. The amplitude curves qualitative behaviour
is very different for n =

√
m than for other values of n.

In the next section, we try to explain the presence of oscillations in amplitude
curves by interference phenomena.
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Interference between two modes

We have seen that various wavelength perturbations are present in the flow.
But even if only one wavelength was present, we could not conclude that only
one mode is present. Indeed, we have seen in section 2.1 that in their linear
stability study, Yiantsios and Higgins calculate the growth rate of various modes
of wavenumber α. Then, they select the fastest growing mode to determine
whether the flow is stable or not for the selected value of α.

This means that several modes of identical wavelength 2π/α may be present
in the flow at a given time. Provided the amplitude of these modes is small,
they are essentially decoupled and behave linearly. Each mode perturbs the
interface independently. The interface has a sinusoidal shape given by the sum
of the contributions of the various modes.

We will show that the various modes present in the flow may give rise to
interference phenomena in the amplitude curves.

For only one mode present in the perturbation, and assuming that its be-
haviour is linear, the position of the interface is given by a function of x and t
of the form

h(x, t) = <
{

geiα(x−crt−icit+β)
}

= geαcit {cosαx cos[α(β − crt)]− sinαx sin[α(β − crt)]} ,

In which g is the amplitude of the mode, < is the real value of a complex number
and β is a horizontal shift parameter. The amplitude of the perturbation on the
interface may be computed with the usual formulas:

h1(t) =
α

π

∫ 2π
α

0

h(x, t) cos(αx)dx,

= geαcit cos[α(crt− β)].

h2(t) =
α

π

∫ 2π
α

0

h(x, t) sin(αx)dx,

= geαcit sin[α(crt− β)].

A(t) =
√

h21(t) + h22(t),

= geαcit.

We obtain of course an amplitude increasing (or decreasing) exponentially with
time.

If several modes of wavenumbers α are present in the flow, the two compo-
nents of the amplitude are given by

h1(t) =

n
∑

l=1

gle
αclit cos[α(clrt− βl)],
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h2(t) =

n
∑

l=1

gle
αclit sin[α(clrt− βl)].

and the amplitude is

A(t) =

√

√

√

√

(

n
∑

l=1

gleαc
l
i
t cos[α(clrt− βl)]

)2

+

(

n
∑

l=1

gleαc
l
i
t sin[α(clrt− βl)]

)2

.

If only two modes are present in the flow, the last equation may be developped
as follows:

A(t) =

√

g21e
2αc1

i
t + g22e

2αc2
i
t + 2g1g2eα(c

1

i
+c2

i
)t cos {α [(c1r − c2r) t− (β1 − β2)]}.

(2.15)
In this expression, g1 and g2 give the amplitudes of the two modes. c1i and c

2
i are

related to their respective growth rates αci. The difference c
2
r−c1r is proportional

to the difference of translation velocity of the modes. The oscillation frequency
of the amplitude curves is given by α‖c2r − c1r‖/2π. In the square root, the
first two terms correspond respectively to the amplitudes of the first and second
modes. The last term is related to the interference between the two modes.
This term generates the oscillations observed in Figure 2.19.

In order to check the validity of our explanation, we try to find two modes
of the first harmonic that interfere to give the curve n =

√
20 in Figure 2.19.

We search the parameters g1, g2, c
1
i , c

2
i , c

2
r − c1r and β2 − β1 of equation (2.15)

that minimize
∫ tf

t0

(Aapprox(t)−Afem(t))2 dt,

in which Aapprox is the amplitude of our approximating two modes perturbation,
and Afem is the amplitude given by the transient numerical calculation. For the
various parameters, we find the values given in table 2.1. The curve approxi-
mating the amplitude of the perturbation on the interface corresponding to the
parameters is given in Figure 2.22.

Table 2.1: Parameters describing the two interfering modes of Figure 2.22.

parameters values

g1 0.03065941059219
g2 0.06194600564449
c1i -0.00074933164247
c2i -0.00070911707249
c2r − c1r 0.02696972599487
β2 − β1 0.18015331517018

It appears clearly in Figure 2.22 that more than two modes of the first
harmonic have to be introduced in the approximating perturbation to better
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Figure 2.22: Approximation of the interference phenomenon for two interfering
modes. The continuous curve gives the results of the finite element calculation
Afem, and the dashed line corresponds to the approximating curve with two modes
Aapprox. The parameters describing the interfering modes are given in table 2.1.

approximate the finite element amplitude curve. But the interference of only
two modes gives a good approximation of the oscillations of the amplitude curve.
The growth rates of the modes given respectively by αc1i and αc2i are negative
and small compared to the growth rate for n = 2.63.

2.3 Planar coextrusion in a channel

In the previous sections of this chapter, we have investigated the behaviour of
flows periodic in the x direction. Actually, in practical situations, the observed
flows are never periodic in space. In coextrusion processes, the die in which the
fluids are flowing has a finite length, and the amplitude of the perturbations
depends on the distance to the inlet section. In this section, we investigate the
stability of the interface between two fluids coextruded in a long channel (Figure
2.23).

The thickness of the upper layer is fixed to one. The thickness of the lower
layer is equal to n. The length of the channel is 250. The vertical distribution
of the elements in the mesh is identical to the distribution used for the peri-
odic calculations. Horizontally, the mesh is divided in 320 equally distributed
elements.
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vs = 0Q1 = Q1(t)

hinterf = 0

Q2 = Q2(t)

Figure 2.23: Geometry of the computational domain for the two layer coextrusion
in a channel. The fluids are injected at the left, and exit at the right.

2.3.1 Inflow boundary conditions

In order to perturb the flow, we make the flow rates of both fluids depend on
time, the total flow rate remaining constant. Basically, two kinds of perturba-
tions may be added to the base flow:

• The flow may be perturbed periodically in time. For example, by adding
a sinusoidal perturbation sin(ωt), for t ∈ [0,∞].

• The perturbation may be added during a small interval of time t ∈ [0, tmax].

In our calculations, the general form for the dependence of the flow rates on
time is given by

Q1(t) =

{

Q10 +B sin(ωt) if 0 < t < ∆tperturb,
Q10 if t > ∆tperturb,

Q2(t) =

{

Q20 −B sin(ωt), if 0 < t < ∆tperturb,
Q20 if t > ∆tperturb,

in which B is related to the amplitude of the imposed perturbation, ω to its
wavelength, and ∆tperturb is the interval of time during which the perturbation
is added to the base inflows. We assume that before entering into the channel,
the fluids are separated by a plate. Therefore, the position of the interface on
the inlet section is fixed (h = 0). At the outlet section, we impose fn = 0
and vs = 0. For other boundary conditions, the problem is very similar to the
periodic problem described in section 2.2, and the characteristic dimensionless
numbers are those presented in section 2.1.1.

We select ω such that the wavelength of the perturbations is approximately
equal to 5π, corresponding to the wavenumber α = 0.4 used so far. Thus, ω
is related to the translation velocity of the perturbation αcr by 2παcr = 5π =
2π/α or ω = α2cr.

Four different calculations have been done: the varying parameters used for
each calculation are summarized in table 2.2. (The symbol “#” corresponds
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Table 2.2: Parameters of the four calculations of perturbed coextrusion flows in
a channel.

# n B ω ∆tperturb

1 2.63 0.15 0.550 ∞
2 8.00 0.25 0.328 ∞
3 2.63 0.15 0.550 11.424
4 8.00 0.25 0.328 19.156

to the referring number of the calculation.) The upper and lower flow rates
imposed on the inlet section are given by the two terms of equation (B.2). In
order to impose the inlet velocity fields, we calculate on each part of the inlet
a parabolic profile. This parabolic profile is imposed as a boundary condition
on the velocity for the resolution of the Navier-Stokes equations in both layers.
For calculations 3 and 4, the value of interval of time ∆tperturb is approximately
the duration of one time period of the sinusoidal oscillation.

In sections 2.3.2 and 2.3.3, we analyse the results respectively for perturba-
tions periodic in time, and for perturbations added during a small interval of
time.

2.3.2 Periodic perturbations in time

In this section, we present the results for the calculations 1 and 2. The thickness
ratios are n = 2.63 and n = 8. They correspond respectively to a stable and an
unstable perturbation. To represent the evolution of the perturbation, we only
will plot the hight h of the interface as a function of the horizontal position x
and for various values of the time t.

The aspect ratio (ymax − ymin)/(xmax − xmin) of the computational domain
being very small, we use different scales for the coordinates x and y. For the
x (i.e. horizontal) direction, 52 mm on the plots represent a dimensionless
length of 250. For the y (vertical) direction 14 mm on the plots represent a
dimensionless height of 1.09. To recover the aspect ratio of the calculations, the
vertical distances should be divided by approximately 62.

For n = 8, the perturbation imposed on the inflows is expected to be stable
(i.e., the amplitude of the oscillations is expected to decrease with the distance
to the inlet section). In the last plot of Figure 2.25 (t = 240), we see that
the amplitude of the perturbations is roughly independent of the horizontal
position in the channel. But one observes that the shape of the oscillations
depends on the position: close to the inlet section (left side), the oscillations are
more regular, and their wavelength is larger than the oscillations on the right
side of the channel.

This may easily be explained if we remember that for n = 8, the first har-
monic of the perturbation is stable, and that the higher order harmonics are
unstable. In our channel flow, the first harmonic dominates close to the inlet
section, but its amplitude progressively decreases. However, the higher order
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t = 25 t = 50

t = 75 t = 100

t = 125 t = 150

t = 175 t = 200

t = 225 t = 250

Figure 2.24: Development of a perturbation in a two layer Poiseuille flow in a
channel (ω = 0.55, n = 2.63, m = 20, IR = 10, B = 0.15, and ∆t = 0.25). The
results correspond to calculation 3 in table 2.2.
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t = 20 t = 40

t = 60 t = 80

t = 100 t = 120

t = 140 t = 160

t = 180 t = 200

t = 220 t = 240

Figure 2.25: Development of a perturbation in a two layer Poiseuille flow in a
channel (ω = 0.328, n = 8, m = 20, IR = 10, B = 0.25 and ∆t = 0.25). The
results correspond to calculation 2 in table 2.2.
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harmonics are present close to the inlet section because of the nonlinearities of
the flow. Their respective amplitudes are small in that area, but they grow
while being translated towards the exit. During that process, the first harmonic
is progressively “replaced” by interacting higher order harmonics. The interac-
tion between those harmonics is responsible for the “chaotic” behaviour of the
interface.

2.3.3 Perturbation during a small interval of time

In this section, we present the results for the calculations 3 and 4. Here again,
the thickness ratios are n = 2.63 and n = 8 respectively in Figures 2.26 and
2.27.

t = 25 t = 50

t = 75 t = 100

t = 125 t = 150

t = 175 t = 200

t = 225 t = 250

Figure 2.26: Development of a perturbation in a two layer Poiseuille flow in a
channel (ω = 0.55, n = 2.63, m = 20, IR = 10, B = 0.15, ∆tperturb = 11.424
and ∆t = 0.25). The results correspond to calculation 3 in table 2.2.

For n = 2.63, the initial wave packet is translated towards the exit. During
its displacement, the amplitude of the waves increases, and the packet disperses.
The wavelength of the oscillations remains approximately constant during the
calculation. Observing the interface at a selected point in the channel (for
example the mid point x = 125), we see that after the passage of the wave
packet, the interface recovers its original shape. It seems that no wavy interface
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may be observed in our calculations without imposing any perturbation on the
inlet section.

t = 25 t = 50

t = 75 t = 100

t = 125 t = 150

t = 175 t = 200

t = 225 t = 250

t = 275 t = 300

Figure 2.27: Development of a perturbation in a two layer Poiseuille flow in a
channel (ω = 0.55, n = 8, m = 20, IR = 10, B = 0.15, ∆tperturb = 11.424 and
∆t = 0.25). The results correspond to calculation 4 in table 2.2.

For n = 8, the perturbation of the inflow during a small interval of time leads
to a slightly different qualitative behaviour (Figure 2.27). The wave packet is
split into two sets: a short wavelength one and a large wavelength one. The short
wavelength packet has a larger translation velocity than the long wavelength
one, and exits the channel first. Its amplitude increases while the amplitude
of the long wavelength oscillations progressively decreases. This observation
is consistent with the conclusions of the linear stability analyses and with our
transient periodic calculations.

We also observe very small wavelength oscillations of the interface. But the
wavelength of those oscillations is identical to the length of the elements of the
mesh. It is possible that those oscillations are related to an interfacial instability.
Indeed, we have seen in section 2.1.3, that for vanishing surface tension and
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gravity, and for small wavelength perturbations (large values of α), the area
of stability is limited to a very small interval of thickness ratio n. In order to
correctly model the growth of those very short wavelength perturbations, the
mesh should be refined both in horizontal direction and vertical direction close to
the interface. This would result in an important increase of computational cost
of the calculations. Actually, with only one calculation, it is difficult to obtain
information on phenomena occuring both at very small and intermediate length
scales. Moreover, the very small wavelength oscillations observed in Figure 2.27
have probably been initiated by discretization errors. Therefore, we do not try
to further investigate those very small wavelength perturbations.

2.4 Literature review for core-annular flows

In former sections, comparisons were done between linear stability analyses,
and the results of our transient calculations. It is also interesting to compare
the results of transient calculations with experimental observations of the non-
linear growth of perturbations. However, for planar flows, such a compari-
son would probably give very disappointing results for the assumption of two-
dimensionality only may be approximately satisfied in practical situations. The
problem arises mainly from the fact that the flow is always limited in the third
direction z. A very large experimental device should be used to eliminate the
effect of lateral walls.

In order to avoid this difficulty, we investigate now the stability of core-
annular flows. For such flows, results of experimental observations of oil and
water flowing in tubes have been published [CGH61, MBD+92, CBJ90, BCJ92,
JR93b], and assuming that the flow is axisymmetric, comparisons can be done
with the results of our transient calculations on two-dimensional computational
domains. Actually, the fluids have different densities, and the assumption of
axisymmetric flow only is valid for vertical flows. Thus, the comparisons are
done with vertical flows experiments. We have an “up”-flow when the fluids are
pushed against gravity, and a “down”-flow when they flow towards the same
direction as gravity. The aim of this section is to prove that our transient
calculations allow us to predict the evolution of an unstable small amplitude
perturbation towards a nonlinear flow regime.

The configuration of the base core-annular flow we are going to study is
given in Figure 2.28. The internal radius of the pipe is R2. The radius of the
core layer is R1. We assume that in all our calculations, the axis of the pipe
is vertical and that gravity is parallel to this axis, oriented towards the bottom
(negative values of z), and that its value is g. In following sections, we often
denote the core and annular layer fluids with “oil” and “water”, because those
two fluids were used in most experiments.
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R1

z

r

R2

Figure 2.28: Configuration of the core-annular flow.

2.4.1 Dimensionless numbers

In our calculations, we solve dimensionless equations. Lengths are scaled with
R1, velocity is scaled with the centerline velocity v0, time with R1/v0, pressure
with ρ1v

2
0 , gravity with v20/R1, surface tension with ρ1v

2
0R1, and the flow rates

with v0R
2
1. In order to simplify the notations, we use the same symbols to write

the dimensional and dimensionless equations. The momentum equations are

Dv1

Dt
= −∇p1 +

1

IR1
∇2v1 + g,

ζ
Dv2

Dt
= −∇p2 +

1

IR2
∇2v2 + ζg,

where

ζ =
ρ2
ρ1
, IR1 =

v0R1ρ1
µ1

, IR2 =
v0R1ρ1
µ2

.

The radius ratio is noted a = R2/R1.
The difference between our dimensionless equations, and the equations of

Preziosi, Chen and Joseph [PCJ89], comes from the fact that they use respec-
tively ρ1 and ρ2 to adimensionalize their equations in each layer. The correpon-
dance between the Reynolds numbers is given by

IR1 = IRPCJ1 , IR2 =
IRPCJ2

ζ
.

Moreover, their dimensionless surface tension is given by

J∗ =
γR2
ρ1ν21

,

in which ν1 is the kinematic viscosity of the upper layer (ν1 = µ1/ρ1). The
advantage of this choice is that their surface tension parameter is related to
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the radius of the pipe and material parameters characterizing the fluids. Our
dimensionless surface tension is given by

S =
γ

ρ1v20R1
,

and thus also depends on the oil and water flow rates.

2.4.2 Linear stability

We summarize in this section some results of studies of the linear stability of
Newtonian core-annular flows. The methods used for these studies are similar
to what we have presented in section 2.1. We essentially present the results of
Preziosi, Chen and Joseph [PCJ89], and discuss the effects of surface tension
and inertia.

Perturbations

In order to study the linear stability of axisymmetric Poiseuille flows, small
amplitude perturbations are added to the base flow, and the Orr-Sommerfeld
equations for core-annular flows are established. As has been shown in section
2.1.3, the Orr-Sommerfeld equations lead to an eigenvalue problem that can be
solved analytically for large or small wavelength perturbations or numerically
for intermediate wavelengths.

The general form of the periodic perturbations is

(

v′

p′

)

(r, θ, z, t) =

(

v0
p0

)

(r) exp(iα(z − ct) + inθ),

h′(θ, z, t) = h0 exp(iα(z − ct) + inθ),

in which v′, p′ and h′ are the perturbations on the velocity, the pressure and the
interface position respectively, θ is the azimutal coordinate, α and n are the axial
and azimuthal wavenumbers respectively, and c = cr + ici is a complex number
related to the growth rate and the translation velocity of the perturbations.

Depending on the value of n, we may distinguish two different kinds of per-
turbations: the axisymmetric perturbations (n = 0) and the non-axisymmetric
ones (n > 0). Our aim being to calculate the transient nonlinear evolution of
perturbations, we limit our investigations to axisymmetric perturbations. This
allows us to calculate the flow on a two-dimensional domain. However, non-
axisymmetric flows are often observed in experimental studies, especially in
down flows [CBJ90, BCJ92, JR93b].

Linear stability results for core-annular flows

Preziosi, Chen and Joseph use a numerical technique to discretize and solve the
eigenvalue problem and investigate the linear stability for intermediate wave-
length perturbations [PCJ89]. They investigate the effects of the wavenumber
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α, of the Reynolds numbers, surface tension and gravity. They plot neutral
curves in the plane (α, IR1) and for various values of the viscosity ratio m (Fig-
ure 2.29).

Let us first examine the curve m = 0.7. For such a value of the viscosity
ratio, the unstable areas are located in the lower left, and upper right corners
of the plot:

• In the lower left corner, the instability occurs at small Reynolds numbers
and for small values of the wavenumber α (i.e. large values of the axial
wavelength). The instability is caused by capillarity: the interface tries
to reach a configuration for which its area is minimum for given volumes
of oil and water. It easily may be demonstrated that such an instability
cannot occur for values of α larger than one, and the neutral stability
curves confirm this result.

• In the upper right corner, the instability occurs at larger values of the
wavenumber α and of the Reynolds number IR1. This instability is caused
by inertia.

• There exists an interval [IRL, IRU ] in which the flow is stable for all values
of the axial wavenumber α. In that area, the small wavelength capillary
instability is compensated by a “thin layer effect” (see section 2.1.4).

Two conditions are needed to produce a thin-layer effect: the viscosity difference
between the two fluids must be sufficiently large, and the thickness of the lower
viscosity layer must be sufficiently small compared to the thickness of the other
layer (here, the core layer of radiusR1). When the viscosity ratiom progressively
tends towards one, the difference of the viscosities of the two layers progressively
vanishes. Therefore, the interval [IRL, IRU ] becomes progressively smaller and
finally disappears around m ≈ 0.77. Of course, when the larger viscosity fluid
is in the annular layer, the flow is unstable as has been shown by Hickocx and
Joseph, Renardy and Renardy [Hic71, JRR84].

The results plotted in Figure 2.29 are calculated for a radius ratio a = 1.25.
if this ratio increases, the thin-layer effect progressively disappears. Joseph,
Renardy and Renardy and Preziosi, Chen and Joseph show that the stabilizing
thin-layer effect cannot compensate instabilities for a radius ratio larger than
approximately 1.5 (this value may vary with other parameters like the viscosity
ratio and surface tension).

For large values of the Reynolds number IR1, surface tension prevents the
growth of small wavelength perturbations. But the stabilizing effect of surface
tension progressively decreases when IR1 increases. Therefore, the maximum
wavelength for which a perturbation may be unstable increases with the Rey-
nolds number IR1. Joseph, Renardy and Renardy showed that, in the absence
of surface tension, small wavelength perturbations are unstable. Their result
agrees with a similar observation made by Hooper and Boyd about the stability
of unbounded Couette flows [HB83].
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Figure 2.29: Neutral stability curve IRc(a,m, J
∗), J∗ = 930, a = 1.25. The

curves are plotted for various values of the viscosity ratio m: m = 0.9 (—),
m = 0.8 (–.–.–), m = 0.78 (ooooo), m = 0.75 (- - - - -), m = 0.7 (– – – –).
(from [PCJ89]).
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2.4.3 Experimental results

We briefly summarize the experimental results of Charles, Govier and Hodgson
[CGH61] and Bai, Chen and Joseph [CBJ90, BCJ92, JR93b]. In particular,
we are looking for a disturbed flow regime that can be calculated by transient
simulations.

Charles, Govier and Hodgson

Preziosi, Chen and Joseph [PCJ89] try to correlate the results of their numerical
linear stability analyses with experimental results of Charles, Govier and Hodg-
son [CGH61]. In their paper, Charles, Govier and Hodgson present pictures of
eleven different flow regimes (Figure 2.30).

Preziosi, Chen and Joseph calculate the neutral stability curves for param-
eters corresponding to the eleven pictures of Figure 2.30. For each selection
of flow parameters, they calculate the wavelength of the fastest growing ax-
isymmetric perturbation, and they try to correlate that length with the size of
bubbles and slugs observed in the experiments.

More precisely, we note α̃ the wavenumber of the fastest growing perturba-
tion, and λ̃ = 2π/α̃ the corresponding wavelength. Preziosi, Chen and Joseph
make the assumption that as the growth of the perturbation proceeds, an ini-
tially cylindrical portion of the core of length λ̃ and radius R1 will break either
in bubbles or in slugs, depending on the wavelength λ̃. If λ̃ is small enough, the
cylinder breaks in spherical bubbles. Assuming that the volume of the cylinder
of length λ̃ is conserved during the break-up process, the radius of the bubbles
may be estimated:

ltheor =
Rb

R2
=

(

3π

2α̃

)
1

3 1

a
, (2.16)

in which Rb is the radius of the bubble. If the value of ltheor calculated with this
formula is too large (i.e. l >∼ 0.85), bubbles also are too large to fit in the pipe,
and they become slugs. Slugs seem well lubricated for R2/Rs ≈ 1.2. Therefore,
a cylinder portion of the core fluid of length λ̃ and radius R1 will gather in a
slug of radius Rs = R2/1.2 and length ltheor, in which ltheor is given by

ltheor = 1.44λ̃/a3 = 2.88π/α̃a3. (2.17)

Using equations (2.16) and (2.17), Preziosi, Chen and Joseph predict the
size of bubbles and slugs that may be expected in experimental flows, and they
compare their results with the observations of Charles, Govier and Hodgson.
The comparison is summarized in table 2.3. The qualitative agreement between
predicted and observed values of the dimensions of bubbles or slugs is suprisingly
good.

Bai, Chen and Joseph

Bai, Chen and Joseph [CBJ90, BCJ92, JR93b] use an experimental device com-
posed of a pipe describing a “U” loop, The curved section of the pipe being on
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Figure 2.30: Eleven different flow types observed by Charles, Govier and Hodg-
son (from [CGH61, PCJ89]).
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Table 2.3: Comparison of theory and experiments for the prediction of the flow
patterns observed by Charles, Govier and Hodgson. The numbers in the first
column refer to the numbers of the flow patterns in Figure 2.30. σ(α̃) is the
growth rate of the pertrubation predicted with the linear theory. (From [PCJ89].)

Experimental results Theoretical results

# a IR1 lexp α̃ σ(α̃) ltheor
3 1.42 69.80 4.5 (short slug) 0.6 7.83518 10−2 5.2665

7.5 (long slug)
4 2.24 26.98 0.85 (bubble) 0.66 2.91616 10−2 0.8596
6 1.5 406.90 > 15.75 (slug) 0.22 5.85969 10−2 12.1856
7 1.74 287.41 13.1 (slug) 0.08 2.34665 10−3 21.4686
8 2.80 134.50 0.69 (bubble) 0.61 5.23881 10−2 0.7060
9 1.81 795.97 6.0 or > 15.75 (slug) 0.32 6.84020 10−2 4.7682

0.023 5.39895 10−4 66.3405
10 2.65 433.70 2.70 (slug) 0.11 1.82720 10−2 4.4199
11 4.63 221.69 0.3125 (bubble) 0.64 2.41483 10−2 0.4202

the top. Oil and water are injected in the pipe at the left bottom end of the
loop, and exit at the right bottom end. A pressure gradient is imposed to force
the flow. The flow rates of both liquids are adjustable separately.

Bai, Chen and Joseph distinguish various regimes depending on the relative
flow rates of oil and water: Oil bubbles in water, slugs of oil in water, bamboo
waves (BW), disturbed bamboo waves (DBW), disturbed core-annular flow or
corkscrew waves (DCAF) and other regimes.

The results are given as a function of oil and water superficial velocities. The
superficial velocities are defined as the ratio of the flow rates Qo and Qw and of
the area of the pipe A = πR22: Vo = Qo/A and Vw = Qw/A.

The various regimes observed by Bai, Chen and Joseph are summarized in
a flow chart (Figure 2.31). The approximate length of bamboo waves, if such
waves are present, is given in Figure 2.32 for various values of the oil and water
flow rates.

2.5 Transient simulations of core-annular flows

From the good agreement between experimental results and linear stability anal-
yses, it has been concluded that the flow patterns observed by Charles, Govier
and Hodgson arise from the growth of an initially small amplitude perturbation.
Therefore, the transient calculation of an unstable perturbation should allow us
to calculate the transition towards the experimental flow patterns.

However, it is not possible to calculate the complete evolution towards the
breaking into small bubbles or droplets with our method because of the topologi-
cal difficulties and large deformations of the mesh involved by such calculations.
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Figure 2.31: Flow chart in up flow giving the types of flow as a function of the
oil and water flow rates. (From [BCJ92, JR93b].)

Figure 2.32: Average length of the bamboo waves in an up flow for various values
of the oil and water flow rates. (From [BCJ92, JR93b].)
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Therefore, we only present the results for a transient evolution towards the
bamboo waves regime observed by Bai, Chen and Joseph.

2.5.1 Definition of the problem

In this section, a method similar to the one used for planar periodic flows is
used to calculate the transient evolution of periodic perturbations of the base
flow.

Geometry and boundary conditions

The geometry of the problem, and the boundary conditions are summarized
in Figure 2.33. Periodic conditions are imposed on the velocity and the radial
displacement of the interface between the inlet and outlet sections. The velocity
vanishes along the pipe wall, and symmetry conditions are imposed along the
axis of symmetry. The height of the mesh H is equal to the wavelength of the
perturbation we want to study.

g

v = 0
R2

H
R1

v(H) = v(0)

h(H) = h(0)
Dh

Dt
= 0

F

Figure 2.33: Definition of the subdomains and of the boundaries for the calcu-
lation of the transient calculation of the perturbed core-annular flow.

A kinematic condition is used to calculate the motion of the interface, and
we use the method of spines for the remeshing. In this case, the direction of
motion of the nodes is horizontal (parallel to r axis). Surface tension results
in a normal force applied on the interface. An a priori unknown force F (t) is
imposed on the lower section of the pipe. Its value is such that the total flow
rate Q is equal to the prescribed value.
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The initial perturbation of the base flow is obtained by adding a sinusoidal
radial displacement to the interface and calculating a flow on the deformed
geometry. During the calculation, inertia terms are neglected and the normal
component of the velocity field vanishes along the interface. For the initial
perturbation of the interface, we select a horizontal displacement

h0(z) = A0 sin(αz),

in which A0 is the amplitude of the initial perturbation. Here again, a Crank-
Nicolson scheme is used for the implicit correction of the time stepping scheme.

2.5.2 Selection of parameters

Some parameters of the computations are selected directly according to the
experimental conditions described by Preziosi, Chen and Joseph. The diameter
of the pipe is 3/8 inches. The densities of oil and water are respectively ρo =
0.905 and ρw = 0.995. The viscosities are µo = 6.01 poise and µw = 0.01 poise.
The surface tension between oil and water is T = 8.54 dyn/cm.

It is not possible to select the other parameters in order to match exactly
experimental conditions. The experimental parameters are given for flows in a
nonlinear regime. For disturbed flows, the volumes ratios of oil and water in
the pipe are not univoquely determined by the flow rates. Therefore, approxi-
mations are done to estimate the core radius R1 of the base flow. According to
observation of Preziosi, Chen and Joseph, the core radius is given by

R2 = R1/
√

1 + hVw/Vo, (2.18)

in which h is the hold-up ratio first introduced by Charles, Govier and Hodgson,
and defined by

h
4
=
Qo/Qw
Ωo/Ωw

=
Vo/Vw
Ho/Hw

≈ 1.39, (2.19)

Once the values of the core radius and total flow rates known, the base flow
and the axial velocity may be estimated with the analytical results of section
B.1.2, and the dimensionless numbers are calculated as explained in section
2.4.1.

2.5.3 Transient calculations and bamboo waves

We select the parameters in such a way that the wavelength of the bamboo
waves is approximately 1 cm. From Figures 2.31 and 2.32 we see that such a
wavelength may be obtained with Vw = 0.125 ft s−1 and Vo = 3Vw.

After adimensionalization, we have R1 = 1 and R2 = a ≈ 1.2097. The axial
wavenumber of the perturbation is α ≈ 2.4737, and the height of the mesh is
H = 2π/α. The material parameters for the calculation are

ρ1 = 1, ρ2 = ζ = 1.099448,
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µ1 =
1

IR1
= 0.85366746, µ2 =

1

IR2
= 1.4204117 10−3,

g = −0.98920145, γ = 6.1390097 10−2.

The total flow rate is Q ≈ 0.7713. For the initial amplitude of the perturbation,
we take Ainit = 0.05.

The initially deformed mesh is represented in Figure 2.34.

mesh
nnode=
nvert=
nbd  =
nelem=

2187
574
212
520

xmin  =
xmax  =
ymin  =
ymax  =

 0.000E+00
 0.121E+01
 0.000E+00
 0.254E+01 *

Figure 2.34: Configuration of the initially deformed mesh corresponding to R2 ≈
1.2097,α ≈ 2.4737 and A0 = 0.05.

In Figure 2.35, we plot the mesh for six different values of time. We see that
the bamboo wave regime is rapidly obtained. In Figure 2.36, the shape of the
interface is plotted for two consecutive axial wavelengths, and for three values
of the time close to the end of the calculation: the bamboo waves move in the
upward direction without deforming.

The flow corresponding to the last calculated solution is represented in Figure
2.37. In each layer, the pressure gradient is approximately a constant. The
gradient is essentially related to gravity. Close to the crest, and in both layers,
the pressure gradient has a more complicated shape because of the larger viscous
dissipation in that area. Velocity is nearly a constant in the oil core: oil has a
very large viscosity compared to water, and moves in the flow nearly as a rigid
body. Along the filaments connecting the crests, water seems to follow oil, in
the sense that the velocity in that area is approximately equal to the velocity of
oil and does not seem to vary in that layer. The shearing in the annular layer
concentrates in a thin layer close to the walls.

But here again, an interesting phenomenon appears in the water layer, close
to the crest: the vertical component of the velocity becomes very small. We
even observe vectors pointing downwards. This may be better seen in a zoom
of the area of the crest (Figure 2.38).
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*

t = 7.5

mesh
nnode=
nvert=
nbd  =
nelem=

2187
574
212
520

xmin  =
xmax  =
ymin  =
ymax  =

 0.000E+00
 0.121E+01
 0.000E+00
 0.254E+01 *
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t = 12.5 mesh
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t = 15.0

Figure 2.35: Development of a bamboo wave in a vertical axisymmetric Poiseuille
up flow.
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t = 24.0 t = 24.5 t = 25.0

Figure 2.36: Bamboo waves for three different of time and for an up flow. The
waves move progressively upwards. The continuous line represents the interface,
the dashed line, the axis of symmetry, and the dotted line corresponds to the wall
(R2 ≈ 1.2097,α ≈ 2.4737 and A0 = 0.05).
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nnode=
nvert=
nbd  =
nelem=

2268
615
372
520

variable : Po  
icase =
iax   =
min.  =
max.  =

1
0
-0.254E+01
 0.168E+00

cont. lines
nlines=
in.val.=
incr. =

52
-0.240E+01
 0.200E+00

*

NORM. PROP. VARIABLES:
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 0.100E+01

*

Figure 2.37: Representation of the flow for an established regime of bamboo
waves (R2 ≈ 1.2097,α ≈ 2.4737 and A0 = 0.05). The left part gives the pressure
field. Pressure is maximum at the bottom and the increment of pressure between
two consecutive isolines is ∆p = 0.2. On the right hand side, we represent the
velocity field. The vectors are centered on the elements.

*

Figure 2.38: Velocity field in the area of the crest of the bamboo wave and in
the annular layer. (R2 ≈ 1.2097,α ≈ 2.4737 and A0 = 0.05).
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It is easier to understand what happens in the area of the crest if we plot
the velocity field observed in a coordinate system moving with the bamboo
waves. Indeed, in such a coordinate system, the geometry does not change with
time. We estimate the wave translation velocity from the position of the crest
at various values of t and find Vwave ≈ 1.22. To obtain the new velocity field,
we make the following transformation:

unew = uold,

vnew = vold − Vwave.

We also can transform the pressure field by adding a constant pressure gradient
to the solution, in order to eliminate the hydrostatic pressure gradient. To
calculate the new pressure field, we use the expression

pnew = pold −G
z

H
,

in which G is the total weight of oil and water contained in the pipe divided
by its total volume. With such a transformation, the pressure profile at the
inlet section section nearly is equal to the profile at the outlet section. The
transformed velocities and pressure are plotted in Figure 2.39.

In the new coordinate system, the oil velocity nearly vanishes. That means
that the waves move approximately at the same velocity as oil. The velocity
in the water layer is essentially oriented towards the negative direction. Its
amplitude is maximum close to the crest, for the water flow rate flows in a
narrower “channel”. In that area, the velocity gradient and viscous dissipation
are maximum. It induces a pressure drop in the area of the crest: the pressure
is higher just over the crest than under it.

2.6 Conclusions

In this chapter, we use the transient calculation of multilayer flows to investigate
their stability. Our results are compared with linear stability analyses. In
general, the agreement between the two methods is good. But it is difficult
to compare linear stability analyses and time-dependent numerical calculations.
This is related to interference and nonlinear phenomena, and to the fact that our
initial perturbation is not an eigen-solution of the Orr-Sommerfeld equations.

We also investigate the behaviour of planar perturbations growing into the
nonlinear domain. This behaviour cannot be studied with linear theories, and
it is interesting to compare the results of our transient calculations with experi-
mental observations. This is done for the bamboo waves regime of core-annular
flows and the numerical method is proved to be suitable for such calculations.
Attempts have been done to reproduce other flow regimes, but the computa-
tional cost of those calculations was too large because very refined meshes were
required.

Note that the transient calculation of perturbed flows also may be used
to investigate the stability of multilayer viscoelastic flows. For such flows, it
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* *

Figure 2.39: Representation of the flow for an established regime of bamboo
waves (R2 ≈ 1.2097,α ≈ 2.4737 and A0 = 0.05). The left part gives the modi-
fied pressure field (see the transformation equation page 96). The increment of
pressure between two consecutive isolines is ∆p = 0.01. On the right hand side,
we represent the velocity field in a coordinate system moving with the waves.
The vectors are centered on the elements.
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has been shown that the elasticity of fluids has an important influence on the
stability. But, here again, the computational cost of the calculations would be
very important because an additional field must be discretized.

Finally, in order to reproduce encapsulation, three-dimensional transient
multilayer-layer flows have to be calculated. The computational cost of such
calculations is prohibitive. That is the reason why we abandon this way to try
to reproduce the phenomenon.



Chapter 3

Numerical calculations of

encapsulation

In this chapter we present the results of a numerical study of encapsulation.
In particular, we investigate the influence of second normal stress difference on
the phenomenon. Actually, the assumption that N2 may be the cause of en-
capsulation had been done formerly [WUDP72, Uwa95]. But no quantitative
comparisons of numerical results and experimental observations have been done
so far. Here, we compare the results of calculations with experiments of Han
[Han73]. The main advantage of the “N2 assumption” compared to the “interfa-
cial instability assumption” is that it may be investigated numerically by time
independent calculations.

Calculations are done with Giesekus and Reiner-Rivlin models. The rheo-
metrical data used to fit the parameters of Giesekus model are the shear viscosity
and first normal stress difference. To fit the parameters of Reiner-Rivlin mo-
del, we need an estimate of the second normal stress difference as a function
of the shear rate. However, no experimental measurements of N2 are available.
Therefore, we use the Giesekus model to produce the missing data.

In order to solve the problem, we develop an original solution to calculate
the motion of the contact line of the interface and the cylindrical wall. A good
agreement is obtained between numerical calculations and experiments. This
confirms the assumption that N2 is the main factor influencing encapsulation.

The results presented in this chapter will be submitted to the Journal of
Rheology [SL98].

3.1 Literature review

The conclusions of some experimental studies suggest that viscosity differences
alone cause interface shape change, with the less viscous fluid always tending to
encapsulate the more viscous fluid [SB73, SB75, Eve73, Eve75, LW74].

99
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Theoretical studies have been done to try to study the influence of viscosity
and elasticity ratios on encapsulation [WUDP72, KH76]. But the calculations
are generally very complicated and many approximations are done. Thus the
conclusions of those studies are to be taken with much care.

Figure 3.1: Exit angle of the extrudate as a function of the die length. The
assumed arrangement of the fluids in the section of the die is given for various
values of the distance to the merging area. (From [Eve75]).

Some results of Everage [Eve75] indicate that the encapsulation process may
be divided into two parts. The first part of the encapsulation is the result
of fluid rearrangement when the two coextruded fluids merge in the die. This
rearrangement occurs close to the merging area. Then, a very slow encapsulation
process occurs along the tube (Figures 3.1 and 3.2). Everage reports a length of
die equal to 120 times the diameter in order to obtain a new equilibrium with
the slow encapsulation process. But he does not give a satisfactory explanation
of the cause of this slow encapsulation. Moreover, he assumes that the contact
line keeps the position of the separating edge in the rearrangement area without
justifying his assumption.

Few results of three dimensional multilayer flow calculations have been pub-
lished so far. For such complicated calculations, numerical techniques like the
finite element method must be used. Some results have been published for
Newtonian flows (Karagiannis et al. [KHV90]). Non-isothermal calculations
also have been performed [CAD+95b]. The results seem to confirm that the
more viscous fluid is encapsulated by the less viscous one, but the results ob-
tained show very small degree of encapsulation (Figure 3.3). Moreover, it seems
that in all numerical studies, the small degree of encapsulation that has been
obtained occurs in the first characteristic length of flow after the fluids have
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Figure 3.2: Distinction proposed by Everage between the rapid rearrangement of
the fluids close to the merging area, and the slow encapsulation process occuring
along the die. (From [Eve75]).

Figure 3.3: Two layer coextrusion flow calculated by Karagiannis et al. in a
square die with a Newtonian model. (From [KHV90]).
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been brought together in the die [KHV90]. To explain this, Karagiannis et al.
incriminate problems with the boundary conditions and a too short downstream
length of the mesh.

By theoretical development, White et al. show that for two fluids of equal
viscosity flowing in a channel, the fluid with the largest second normal stress
difference must have a convex shape [WUDP72]. That means that it is encap-
sulated by the other fluid. But the analysis of White does not predict steady
state results, and nothing is said for two fluids of different viscosities. Actu-
ally, it is well known that N2 is the cause of secondary recirculations when
one viscoelastic fluid is extruded in a rectilinear die. Thus, it is not surprising
that progressive interface shape changes occur when two fluids are coextruded
in a die. However, in their experimental study of bicomponent stratified flow
in tubes, Lee and White [LW74] show that the less viscous fluid encapsulates
the more viscous one, and that the encapsulation is independent of the relative
elasticities of the fluids. They conclude that the dominating factor for the en-
capsulation is the difference of viscosity of the fluids. Their conclusion has been
confirmed by Khan, Han and Kim [KH76, HK76a, HK76b].

The effect of second normal stress difference on encapsulation has been in-
vestigated by Uwaji both numerically and experimentally [Uwa95]. Let us sum-
marize his results:

• In his experiments, Uwaji shows that when two Newtonian fluids are co-
extruded, the rearrangement occurs in the merging area. But no slow
encapsulation process is observed with Newtonian fluids. This confirms
the results of the Newtonian calculations of Karagiannis et al. [KHV90,
CAD+95b].

• Only in viscoelastic coextrusion experiments, slow encapsulations have
been observed. This indicates that the elasticity of the fluids is the key
factor to explain the progressive encapsulation observed by Everage.

• When viscoelastic and Newtonian fluids are coextruded, the viscoelastic
fluid is encapsulated by the Newtonian one. This phenomenon does not
seem to depend on the viscosity ratio.

• Numerical calculations corresponding to the aforementionned experiments
have been performed with Newtonian and viscoelastic (PTT) models.
They confirm qualitatively the experimental results. Moreover, by mod-
ifying the parameter ξ of PTT model, Uwaji shows that second normal
stress difference causes the progressive encapsulation observed by Everage.

Those results seem to indicate that second normal stress difference is the cause
of encapsulation.

Here, it is interesting to remark that when the influence of elasticities on
encapsulation is investigated, the estimates of elasticities are not based on mea-
sures of second normal stress differences. Actually, we can say that the influence
of N2 has not really been investigated experimentally so far. From the experi-
mental results of Uwaji, it is not possible to determine whether the factor that
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causes encapsulation is N1, N2 or some other property related to the elasticity
of fluids. Numerical calculations only, allow Uwaji to determine that the slow
encapsulation process may be caused by N2. But his numerical results only may
be considered as qualitative investigations of the effect of N2. Indeed, with one
single mode, PTT model only poorly approximates the behaviour of viscoelastic
fluids. Moreover, some experimental results of Uwaji are in contradiction with
many formerly published experimental observations.

In this chapter, we try to explain those contradictions.

3.2 Encapsulation in channel flow

We have seen in section 3.1, that White et al. have shown that when two fluids of
identical constant viscosities are coextruded in a channel, the fluid that exhibits
the largest second normal stress difference should have a convex shaped interface
[WUDP72]. But it also appears from experimental studies that encapsulation is
mainly influenced by the viscosity ratio, and that normal stress differences are
of secondary importance.

In this section, we investigate the influence of the viscosities anf of the second
normal stress difference on two layers channel flows. This has been done to
illustrate the effect of N2 on that kind of flows.

For the calculations presented here, we use the Reiner-Rivlin model. The
use of the Reiner-Rivlin model has two main advantages. First, this model is
cheaper to use in numerical calculations than the viscoelastic models. Second
with the Reiner-Rivlin model, we have a very good control on the viscosities and
second normal stress coefficients of both fluids. In particular, each fluid may
have constant shear viscositiy and second normal stress coefficient. This is not
possible with the Phan-Thien-Tanner and Giesekus models. The use of a vis-
coelastic model for our numerical investigations would make the interpretation
of results very problematic.

3.2.1 Transient calculation with Reiner-Rivlin model

We calculate a transient two-layer channel flow on the computational domain
represented in Figure 3.4. Note that, in this section, we just perform a qualita-
tive investigation. Thus all quantities are dimensionless, and we do not try to
reproduce any realistic case.

In a “channel flow”, the main direction of the velocities is perpendicular to
the computational domain (direction z). All partial derivatives with respect to
coordinate z, save p,z vanish. Note that the possible presence of first normal
stress difference in the model has no effect on planar channel flows. Indeed,
N1 results in a stress τzz parallel to the direction of flow. The assumption that
τzz,z = 0 makes that the contribution of τzz to the momentum equations vanish.

In this case, a constant normal pressure gradient is imposed on the whole
computational domain in order to have a total flow rate equal to Q0 = 1000.
The viscosity is identical for both fluids: η = 20. The second normal stress
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Figure 3.4: Schematic representing the geometry and the boundary conditions of
the two-layer channel flow problem.

coefficient in the upper layer, ψ2 = −2 is twice that of the lower layer. This
second normal stress difference is the cause of secondary recirculations in the
flow. Those recirculations will move the interface.

A kinematic condition is used to calculate the motion of the interface. In
order to avoid too large deformations of the mesh, surface tension is modelled
along the interface: its value has been selected in such a way that an equilibrium
of the stresses between the two layers is progressively reached. When that equi-
librium is reached, the difference of normal components of contact forces on both
sides of the interface is compensated by surface tension. For our calculations,
γ = 30 gives a satisfying equilibrium configuration.

Along the walls, slip conditions are applied in order to allow the motion of
the contact point:

vt = kslipf t,

vn = 0.

The value of the slip coefficient is kslip = 20 along the four walls on which that
condition is used.

Finally, symmetry boundary conditions are applied on the left boundary. Ac-
tually the computational domain given in Figure 3.4 represents a square channel
in which two fluids are coextruded. The symmetry of the problem has been used
to reduce the computational cost of the calculation.

For the time discretization, we use an implicit Euler scheme (section 1.4).
The mesh on which the calculations are done is represented in Figure 3.5. To
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propagate the motion of the interface into the meshes of both subdomains, we
use the method of spines. The direction of motion of all nodes is vertical.

*

Figure 3.5: Mesh on which the two-layer channel flows are calculated.

We plot in Figure 3.6 the configuration of the layers and the stream function
for various values of time. The upper layer (high |ψ2| fluid) pushes progressively
into the lower layer (low |ψ2| fluid). The lower layer creeps along the right wall
and tends to surround the upper layer. An equilibrium position of the interface
is reached for approximately t = 60. Note that at equilibrium, the isolines of the
stream function do not cross the interface. This is normal for at equilibrium,
the position of the interface does not change, and the velocities are parallel to
that interface.

3.2.2 Static calculation of channel flows

We plot in Figure 3.7 the velocity vector field for t = 2.5. Clearly, it is possible
to see which fluid is encapsulating the other fluid, only by the observation of
the velocities. Actually, the velocity field calculated at the first time step may
tell us which is the encapsulating fluid.

This fact suggests us a way to investigate the influence of viscosity and second
normal stress difference on encapsulation at a very low computational cost.
Among the governing equations of the transient problem described in section
3.2.1, only the kinematic condition involves time derivatives: the momentum
equation contains no time derivatives of the velocity field for inertia has been
neglected; moreover, in our constitutive equation, the extra-stress tensor is an
algebraic function of the rate of deformation tensor D, and thus is an explicit
function of v.

Therefore, taking into account the fact that we only need the initial velocity
field to determine which fluid is the encapsulating one, we conclude that a static
calculation (i.e. not time dependent) is sufficient to investigate the influence of
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t = 65 s

Figure 3.6: Configuration of the layers and stream function for various values
of the time t.

*Figure 3.7: velocity vector field for the two-layer channel flow at t = 2.5.
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material parameters on encapsulation. For such static calculations, we are not
looking for the motion of the interface. Thus, we do not need slip at the walls.

A summary of the results of our calculations is given in table 3.1. The
corresponding initial flows are represented in Figure 3.8. The material param-
eters used for calculation (a) are identical to those of the transient calculation
presented in section 3.2.1. For calculation (b) the upper and lower fluids have
identical properties. This explains why no encapsulation phenomenon may be
observed.

Table 3.1: Summary of the parameters used for the various static calculations
of two-layer channel flows, and of the results. In the column titled “Calc.”,
each letter represent the index of the corresponding calculation. The last column
indicates which fluid encapsulates the other fluid (E. F. as“encapsulating fluid”).

Calc. ηupper ψupper2 ηlower ψlower2 E. F.

(a) 20 -2.0 20 -1.0 lower
(b) 20 -2.0 20 -2.0 (-)
(c) 10 -1.0 20 -1.0 lower
(d) 10 -1.0 20 -2.0 upper
(e) 10 -1.0 20 -1.5 lower
(f) 10 -1.0 20 -1.6 upper
(g) 10 -1.0 30 -3.0 upper
(h) 10 -1.0 30 -2.0 lower

Now let us first investigate the effect of an increase of the second normal
stress coefficient. We compare successively the results of calculations (c), (e),
(f) and (d). For (c) and (d), only one recirculation may be observed. Note that
those two recirculations have different directions of rotation: in (c), the fluids
rotate counter-clockwise, while the direction of rotation in (d) is clockwise. We
observe that by progressively increasing the second normal stress coefficient of
the lower layer, a second recirculation is created in the bottom of that layer.
This recirculation grows and progressively embraces the whole computational
domain. We also observe that for situations (c) and (e), the lower viscosity fluid
is encapsulated by the higher viscosity fluid. This result is in contradiction with
most experimental observations.

An observation still more surprising may be done by comparing situations
(d) and (h). For those two calculations, the second normal stress coefficients are
identical. Only the shear viscosity of the lower layer fluid has been increased
in (h). It seems that a consequence of that increase is that the lower layer
encapsulates the upper layer. This too is in contradiction with experimental
results.

In all our calculations, when the fluids have same shear viscosity and second
normal stress coefficient ratios, ηupper/ψupper2 = ηlower/ψlower2 , the more viscous
fluid is encapsulated by the less viscous one (calculations (b), (d) and (g)). At
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(h)

Figure 3.8: Configuration of the initial recirculations for various sets of material
data (see table 3.1). Note that the distance between two consecutive lines is
different for each plot, and thus cannot be used to estimate the amplitude of the
recirculations.



3.2. ENCAPSULATION IN CHANNEL FLOW 109

last, we have one observation in line with experimental results!

3.2.3 Interpretation of results

Note that the comparisons done in the preceding section have been done on
the basis of shear viscosity and second normal stress coefficient. We also could
have made our comparison on the basis of second normal stress difference and
shear stress. This is not easy to make for the shear rate is not a constant on
the computational domain. But now, let us examine intuitively the effect of a
variation of the shear viscosity in one layer on shear stresses and second normal
stress differences.

Let us first remark that for fixed shear viscosity and second normal stress
coefficient, shear stress is a linear function of shear rate, while second normal
stress difference is a quadratic function of the shear rate.

Let us start from a situation similar to (b), in which the two fluids have
identical material properties (η = 10 and ψ2 = −1). For those parameters, the
initial flow is identical to that presented in part (b) of Figure 3.8: secondary
recirculations appear in both layers, but the vertical component of the velocity
vanishes along the interface.

Let us now increase the lower fluid viscosity to ηlower = 20. Thus, we cal-
culate the flow with the parameters of (c). The total flow rate is identical to
that of the preceding calculation, but the flow rate of the lower fluid decreases,
and that of the upper layer increases. Consequently, the shear rate increases
in the upper layer and decreases in the lower layer. The second normal stress
coefficient remaining unchanged in both layers, this results in a decrease of the
second normal stress difference in the lower layer and an increase of it in the
upper layer. If we accept the assumption that the fluid that exhibits the largest
second normal stress difference is encapsulated, this could explain qualitatively
why an increase of the viscosity of one fluid may lead this fluid to encapsulate
the other fluid.

Note that the assumptions of constant shear viscosities and second nor-
mal stress coefficients are in contradiction with all experimental observations.
Moreover, it is interesting to remark that Phan-Thien-Tanner and Giesekus
models, reduce to Maxwell-B model when parameters ξ or αG are put to zero
(i.e. when second normal stress difference vanishes). A consequence of a pro-
gressive increase of αG and ξ parameters is that second normal stress difference
appears, and that the models exhibit a shear thinning character. Thus, PTT
and Giesekus models cannot have second normal stress difference without ex-
hibiting a shear thinning character. For that reason too, the model used in our
calculations is a very peculiar model.

Thus our calculations have been done with an unrealistic model. It should
be interesting to make calculations with a more realistic model. This is done for
one peculiar case in section 3.3.2, in which encapsulation flows are calculated
using material parameters fit from experimental data.
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3.3 Numerical calculation of a 3D encapsulation

3.3.1 Experiments of Han

In one of his papers, Han presents results about the encapsulation of polystyrene
(PS) by low density polyethylene (LDPE) in circular dies [Han73]. The results
obtained with circular dies are particularly interesting for us: they allow us to
make numerical calculations without solving the topological difficulties related
to the presence of corners in the geometry. Indeed, if we make that kind of
calculation in square dies, when high degrees of encapsulation are achieved, the
contact line encounters the corners of the die section, and modifications of the
mesh topology must be performed to deal with that problem.

Figure 3.9: Experimental device used by Han and Kim for the coextrusion of
LDPE and PS (from [HK76a]).

An experimental device similar to the one used by Han is represented in
Figure 3.9, and a closer view of the die is represented schematically in Figure
3.10. Two extruders are used to bring the fluids together in the die. At the die
inlet, a separating edge ensures that the interface is flat where the two fluids
merge. The extrudate is collected and rapdily cooled in a quench tank (This
last part was not present in the first version of the device used by Han [Han73]).

Han uses three different circular dies described in table 3.2. The two melt
streams are combined at a point very close to the inlet of a die which is divided
by a knife-edged flow divider. Figure 3.11 shows the position of the flow divider.
In order to obtain quantities numerically easy to handle, we express all lengths
in mm. A similar transformation has been done for the other physical quantities:
viscosities are given in kg mm−1s−1, stresses in kg mm−1s−2 and normal stress
coefficients in kg mm−1.

3.3.2 Rheological data

Han presents the viscoelastic properties of the molten polymers used in his
experiments. For the LDPE and PS, he gives the shear viscosity and first
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25.4 mm

10 mm

LDPE

PS

6.35 mm

Figure 3.10: Schematic representing the encapsulation of polystyrene by low
density polyethylene in the experiments of Han [Han73].

Table 3.2: Dimensions of the capillary dies used by Han to investigate the en-
capsulation.

Die D, in. L, in. L/D

A 0.250 1.000 4
B 0.250 2.750 11
C 0.250 4.500 18

R = 3.175 mm

0.8 mm

Figure 3.11: Schematic which shows how two molten polymers meet at the die
inlet in the experiments of Han [Han73].
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normal stress difference as a function of the shear rate. We use those data to
find the material parameters of our viscoelastic models.

Several attemps of fit of experimental curves have been done with the Pan-
Thien-Tanner model without giving satisfactory results. With PTT model,
shear viscosity and first normal stress difference decrease too fast to fit the shear
data. Maybe the problem could be solved using several modes in the model,
but the computational cost associated with such a choice would be prohibitive.

Instead of using PTT model, we try to fit the data with the Giesekus model
defined by

T + λG
5

T +
αGλG
ηV

T · T = 2ηV D. (3.1)

The parameters of the model are the relaxation time λG, the shear viscosity ηV
and the last parameter is αG. For the fit, we use a hybrid procedure:

• We first try to fit the experimental first normal stress difference. For
that step, we select the viscoelastic part of the shear viscosity at about
80% of the viscosity plateau. This gives ηV = 20 (kg mm−1s−1) for the
polystyrene and ηV = 8 (kg mm−1s−1) for the low density polyethylene.
Then, we try to find the parameters αG and λG that minimize the dif-
ference between the first normal stress difference corresponding to the
Giesekus model, and the measured first normal stress difference.

• Then, the difference between the measured shear viscosity and the shear
viscosity predicted with the Giesekus model is calculated. (By selecting
ηV equal to 80% of the viscosity plateau for the Giesekus model, we ensure
that the aforementioned viscosity difference is positive for all values of the
shear rate.) We fit the difference of viscosity with a Bird-Carreau viscosity
law:

ηN (γ̇) = η0
(

1 + λ2Nγ̇
2
)
n−1

2 . (3.2)

Here, the parameters we want to determine are η0, λN and n.

The result of our procedure is a model that fits reasonably well both shear
viscosities and first normal stress differences. The fit parameters are given in
table 3.3, and the corresponding curves for the shear viscosities and first normal
stress coefficients in Figures 3.12 and 3.13 respectively.

Table 3.3: Parameters for the fit of the measurements of Han with a Giesekus
model

ηV λG αG ηN λN n
(kg.mm−1s−1) (s) (-) (kg.mm−1s−1) (s) (-)

LDPE 8 5.7471 0.2241 1.8379 0.2575 0.4639
PS 20 3.7792 0.5167 5.1429 0.2338 0.3203

Now, it is interesting to remark that the second normal stress coefficient
predicted by the Giesekus model with the parameters given in table 3.3 seem to
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Figure 3.12: Fit of the shear viscosity curves. The continuous curve corresponds
to LDPE and the dashed line to PS.
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Figure 3.13: Fit of the first normal stress difference. The continuous curve
corresponds to LDPE and the dashed line to PS.
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be essentially related to the viscosities of the fluids (Figure 3.14): the fluids have
very similar first normal stress coefficients, but the ratio ψLDPE2 /ψPS2 is similar
to ηLDPEV /ηPSV . That means that, in this case, our Giesekus fit predicts that the
more viscous fluid also is the fluid that exhibits the largest second normal stress
difference coefficient.

γ̇ (s−1)

−ψ2(γ̇)
(kg mm−1)

1001010.10.01

100

10

1

0.1

0.01

0.001

0.0001

Figure 3.14: Second normal stress difference of the Giesekus model for the set
of parameters given in table 3.13. The continuous curve corresponds to LDPE
and the dashed line to PS.

Numerical simulations also will be done with the Reiner-Rivlin model:

T = 2η(γ̇)D(v) + 4ψ2(γ̇)D(v) ·D(v). (3.3)

For the functions η(γ̇) and ψ2(γ̇), we use Bird-Carreau laws:

η(γ̇) = η0
(

1 + λ2N γ̇
2
)
n−1

2 , (3.4)

ψ2(γ̇) = ψ20
(

1 + κ2γ̇2
)
m−1

2 . (3.5)

For the fit of the shear viscosity, we may use the experimental data of Han.
But he does not give experimental measurements of the second normal stress
difference. Thus, we have to find a way to estimate second normal stress dif-
ference. In order to “produce” the missing data, we make an assumption: we
assume that Giesekus model with the fit parameters given in Table 3.3 correctly
predicts the second normal stress differences of PS and LDPE. Thus, we adopt
a two step procedure:

1. The shear viscosities and first normal stress differences are used to fit the
parameters of Giesekus model.
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2. The Giesekus model is used to predict second normal stress differences as a
function of the shear rate γ̇. The second normal stress differences predicted
with Giesekus model are used to fit the parameters of the functions ψ2(γ̇)
of the Reiner-Rivlin model (3.3).

The results of the Reiner-Rivlin fits are given in table 3.4 and Figures 3.15 and
3.16.

Table 3.4: Parameters for the fit with Reiner-Rivlin model of the measurements
of the shear viscosities and second normal stress differences predicted by the
Giesekus model with parameters given in table 3.3.

η0 λN n ψ20 κ m
(kg.mm−1s−1) (s) (-) (kg.mm−1) (s) (-)

LDPE 9.3330 5.7939 0.4985 -8.5305 3.9212 -0.8252
PS 23.119 3.9894 0.4343 -33.973 3.5959 -0.8613

γ̇ (s−1)

η(γ̇)

(kg mm−1s−1)
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100
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0.1

Figure 3.15: Fit with a Bird-Carreau law of the shear viscosity predicted with
the Giesekus model. The continuous curve corresponds to LDPE and the dashed
line to PS.

3.3.3 Boundary conditions

In order to reduce the computational cost, the calculations are done on half of
the computational domain (Figure 3.17). Boundary conditions are imposed on
the velocities for the momentum equations, on the coordinates for the remesh-
ing equations, and on the extra-stress tensor for the constitutive equations (vis-
coelastic calculations only).
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Figure 3.16: Fit with a Bird-Carreau law of the second normal stress coefficients
predicted with the Giesekus model. The continuous curve corresponds to LDPE
and the dashed line to PS.

Symmetry planes

Outflows

Contact line

Walls

Separating plate

Inflows

Figure 3.17: Computational domain and boundary sets for the numerical calcu-
lation of a three dimensional encapsulation.
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1. For the momentum equation, vanishing normal velocities and tangential
contact forces are applied along the symmetry plane. The velocities vanish
along the walls and the separating plate.

For the inflows, the flow is first calculated separately (one calculates a
channel flow on the inlet section). Then, the calculated velocities are
imposed as Dirichlet boundary conditions for the three dimensional calcu-
lation.

Along the outlet section, we impose vanishing tangential velocities; this
has been done to avoid a too large deformation of the interface close to
the exit of the die.

For the viscoelastic calculations, we also impose Neumann boundary con-
ditions at the momentum equation along the output section. The contact
force imposed is

t = T · n,

in which n is the normal vector to the outlet section. Actually, only
the normal component of t influences the flow, for Dirichlet conditions
are imposed on the tangential components of the velocity on the outlet
section.

2. For the remeshing, the position of the nodes of the free surface is deter-
mined with the line kinematic condition. The remeshing technique is such
that the axial coordinate of each node (z coordinate) is conserved by the
remeshing. The nodes may move along the walls and along the symmetry
plane. On those surfaces, we impose a vanishing displacement towards the
normal direction. This forces the nodes located on the cylindrical walls to
move tangentially to that surface.

In all calculations, the second normal stress difference is progressively in-
troduced in the calculations by the use of a continuation technique. This is
done in order to progressively increase the degree of encapsulation. In our
first calculations, we observed that the walls progressively departed from
the cylindrical shape. Thus, the imposition of a vanishing displacement
in the normal direction was not sufficient to keep the cylindrical shape.
In order to solve that problem, the wall nodes are repositioned on the
cylinder at the end of each continuation step.

3. For the viscoelastic calculations only, boundary conditions are imposed on
the constitutive equation. As has been done for the momentum equation,
the inflow is calculated separately: velocities and extra-stress tensor are
calculated by solving a channel flow problem on the inlet section. Then
the calculated fields are used to impose Dirichlet conditions for the three-
dimensional calculation of the viscoelastic flow.
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3.3.4 Interpolations

In order to reduce the computational cost of the calculations, we use the mini-
element of Fortin for the spatial discretization of velocities and pressure [For81].
We use a trilinear interpolation of the coordinates.

For viscoelastic calculations, we use the DEVSS formulation of Guénette
and Fortin. The extra-stress tensor, is discretized with a trilinear interpolation.
For the additional tensor D, we use a constant and discontinuous interpolation
per element (thus the shape function of D are identical to those of the pressure
field).

3.3.5 The contact line problem

Along the walls, the velocity vanishes, and consequently, the kinematic condition
vanishes too. Therefore, we have no equation to predict the position of the
contact line between the free surface and the walls. In order to circumvent this
difficulty, we propose a “line dynamic condition” in which the contact force is
used instead of the velocity to calculate the kinematic condition. This condition
is approximately equivalent to a slip condition in which the slip coefficient is
very small.

Slip boundary conditions in the literature

It is interesting to remark that the words “contact line” are used in various
contexts in the literature. For example, they are used to describe the separating
line of the extrudate at the exit of a die [SS80]. In that context, the fluids
flow perpendicularly to the line, and stress singularities appear close to the
die lip when stick boundary conditions are used. Silliman and Scriven suggest
the introduction of slip conditions in order to avoid those singularities. The
problem of stick and slip boundary conditions has been discussed in many other
publications, either from molecular or continuum viewpoints. The continuum
aspect of the problem only, is interesting for us.

We are interested in a problem in which the flow is parallel to the contact line.
The contact line is defined as a fluid-fluid-solid intersection. The position of the
line is a priori unknown, but located on the solid surface. It seems that in that
case, no stress singularities are observed [SS80]. Anyway, we are not interested
in the problem of stress singularities, but in the problem of the calculation of the
position of the contact line. In this case, when slip conditions are introduced,
the aim is to have an equation to calculate the kinematic condition, and not to
avoid stress singularities.

The introduction of slip boundary conditions to calculate the motion of the
contact line in 3D coextrusion flow calculations has been done by Torres et al.
[THV+93]. They compare results obtained with the extrapolation method of
Dheur and Crochet [DC87], with slip conditions on the contact line and with
stick boundary conditions. Unfortunately, several errors have been done in the
writing of slip boundary conditions. For example, they use the two-dimensional
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simplified version of the Navier’s slip condition of Silliman and Scriven [SS80]
instead of the general Navier’s condition

− 1

kslip
δII · (u− us) = δII · (σ · n), (3.6)

in which kslip is the slip coefficient, n the normal to the wall, u the fluid velocity,
us the wall velocity, δII = δ − nn the geometric tensor that projects vectors
onto the local tangent plane to the surface. But it is clear that the simplified
version of Silliman and Scriven cannot be used in this context; indeed, the
simplification of Silliman and Scriven is based on the planar flow assumption
while in this case, we have a three-dimensional flow.

Line dynamic condition as a limit case of slip condition

We have seen that slip conditions may be used to avoid vanishing kinematic
condition along a wall. Assuming that the wall velocity us vanishes, equation
(3.6) may be written

ut = −kslipF t, (3.7)

in which F t and ut are tangential components of the wall force and wall velocity
respectively. The normal component of the velocity field along the walls, un is
of course equal to zero. The advantage of (3.7) compared to (3.6) is that the
projection tensor δII no longer appears in the equation.

When a condition of the type (3.7) is used, the velocity u = ut along the
wall is different from 0 and may be used in the line kinematic condition. This
will give good results, even with very small values of kslip, for only the direction
of ut is important for the kinematic condition. It is clear that the contact line
is parallel to ut and thus parallel to F t. Thus, we could use F t to “feed” the
line kinematic condition. That is the basic idea of the “line dynamic condition”.

Contact line
F l

F t

WALL

Figure 3.18: Representation of the line dynamic condition. For each point, the
contact line is parallel to the tangential component of the contact force.

In order to avoid the ambiguities of the paper of Torres et al. [THV+93]
we try to describe and justify in section C.1 with as much details as possible
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the way we calculate the position of contact lines in our computational software.
Actually, when we use the line dynamic condition a small velocity appears along
the contact line. Thus, the way we implement the dynamic condition is approx-
imately equivalent to introducing a small amount of slip for the nodes of the
contact line. But the velocity for the other nodes of the wall vanish. (For this
aspect, our condition is similar to the one used by Torres et al.) Another original
aspect of our “slip” condition is that it is calculated node-by-node (i.e. we do
not write its weak formulation); thus, the nodal velocities are a representation
of the nodal contact forces.

Contact line on a cylindrical wall

In our problem, the wall is cylindrical, and the component of the contact force
tangential to that wall (i.e. its projection on the wall) is calculated by adding
a radial compensating force to the initial contact force along the line (Figure
3.19). More precisely, the radial vector is defined as

r(x, y) =
(x, y, 0)

T

x2 + y2
.

The compensating force is oriented towards the radial direction, and is the
Lagrange multiplier of the constraint on the contact force:

Equation F t: F t − Frr = F l,

Equation Fr: F t · r = 0.

In other words, the compensating radial force Fr is calculated in such a way
that F l+Frr is tangent to the wall. This may be better seen on Figure 3.19 on
which we represent the geometric contruction of the compensation radial force,
and the resulting tangential component of the contact force.

F t

Interface

F l

Frr

Figure 3.19: Calculation of the tangential component of the contact force to the
wall by imposition of a compensating radial force.
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3.3.6 Compensation of pressure

But when the wall has a cylindrical shape, other problems have to be solved in
order to use the line dynamic condition. Among those problems, the fact that
the mesh is generally coarse, induces pressure to contribute significantly to the
tangential component of the contact force (Figure 3.20). This numerical effect is
related to the fact that the boundary of the geometry is not well approximated
by the spatial discretization.

Fpn
F t

p

F r
p r

Figure 3.20: Problem for the line dynamic condition caused by the pressure.

The origin of this problem comes from the fact that the pressure contri-
butions may result in a contact force that is not oriented towards the radial
direction. Therefore, the radial compensation of those contributions leaves a
non-vanishing tangential component. Of course, this tangential component of
the pressure contribution to the contact force is totally unphysical: for a non-
dicretized problem, the pressure only leads to contact forces normal to the sur-
face.

This problem may be solved by a refinement of the mesh, or by the use of a
higher order of interpolation for the geometrical unknowns. Unfortunately, those
two solutions may lead to a very important increase of the computational cost.
Therefore, we prefer to cancel the unphysical contributions of the pressure in
the momentum equations along the cylindrical surface. This is done by applying
a compensating normal force on the cylindrical surface. This force is equal to
the pressure in the fluid, and oriented towards the axis of the cylinder (Figure
3.21).

Note that the problem of pressure also occurs when slip conditions are im-
posed on a curved boundary in contact with an interface.
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P

P

Pc

Pc

Figure 3.21: Compensation of pressure applied on the cylindrical surface.

3.4 Viscoelastic calculations

3.4.1 Strategy of resolution

The equations governing the encapsulation problem are strongly nonlinear. The
nonlinearities are related to the nonlinear character of the models, to the pres-
ence of convected derivatives in the constitutive equations, to the presence of
free surfaces, and to the techniques of remeshing used in both layers. The non-
linearities are so important that continuation techniques have to be used to
calculate the encapsulation flow. Therefore, we separate the calculation of the
final flow into three steps:

1. We calculate a flow without introducing any remeshing rule, and thus
without modelling the motion of the interface. For this calculation, we
also neglect all viscoelastic effects. Thus, we put the relaxation time λ to
0.

Note that for this step, the fluid may flow across the interface. This, of
course, is totally unphysical, for it means that the material properties of a
fluid particle change instantaneously when this particle changes of layer.
For that reason, we do not present any result of the first step calculation.

When we put λ = 0 for the viscoelastic calculations, the Giesekus consti-
tutive equation reduces to a Newtonian model. Nevertheless, we calculate
the initial flow with a MIX formulation (we discretize pressure, velocity
and extra-stress fields). This does not increase the total computation cost
significantly for we may do this calculation without using any continuation
method, because the governing equations of this step are quasi linear.

2. The mobility of the interface is introduced in the calculations at the second
step. Here again, because of the nonlinearities of the remeshing equations
and kinematic conditions, a continuation method is used. Indeed, it is
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possible to select flow rates such that the motion of the interface is very
large, even for Newtonian calculations.

An advantage of the line kinematic condition, is that it is possible to
use a continuation method for the motion of the interface, thanks to the
evolution parameter ζl of the line kinematic condition (equation 1.40). We
progressively increase the deformation of the initial interface by making ζl
vary from 0 to 1:

ζl(s2) = s2, s2 : 0→ 1.

3. In the third step of the calculation the viscoelasticity is progressively in-
troduced in the model. This is the most difficult part of the calculation,
and we have made several attempts to find the right path to reach the
final solution. Those attempts are presented in the next section.

We first present in Figure 3.22 the layers configuration obtained at the end
of the second step. This corresponds to a Newtonian fluid, though calculated
with a MIX formulation. The kinematic condition is fully modelled.

For the calculations, we only use the shortest die of Han (die “A” in table
3.2). The reason of this choice is that the calculation of encapsulations in longer
dies generally leads to very high degrees of encapsulation. This leads to very
large deformations of the mesh, and generally the calculation fails before the
end of the continuation on parameter s3. The flow rates for LDPE and PS are
276.67 mm3s−1 and 69.17 mm3s−1 respectively.

A layer rearrangement occurs in the merging area, just after the separating
edge. The lower layer fluid (i.e. the high viscosity polystyrene layer) has a
convex shape. This may be interpreted as follows: just after the separating
edge, both fluids try to swell; but the strongest fluid (in this case PS) imposes
its will to the weaker one (LDPE). It pushes into the low viscosity fluid and
imposes its convex shape. The low viscosity fluid is just “allowed” to wet the
walls.

Note that the layer rearrangement occurs close to the end of the separat-
ing edge. The free surface reaches very rapidly a new equilibrium shape, and
this shape does not seem to vary with the distance from the merging area. In
other words, with a Newtonian model, we obtain the rapid rearrangement in
the merging area, but not the slow encapsulation observed by Everage. This
confirms results obtained for the numerical calculations of encapsulation in a
square die [KHV90, Uwa95].

3.4.2 Progressive increase of relaxation time

The most evident way to introduce viscoelasticity in the model is to increase
the relaxation time λ. Thus, we have

λLDPE =λfinalLDPEs3, s3 : 0→ 1,

λPS =λ
final
PS s3, s3 : 0→ 1,
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Figure 3.22: Configuration of the layers for λ = 0 at the end of the second step
of viscoelastic calculations (Newtonian fluid). The upper part represents the two
layers seen from one side. The lower part gives the layers observed from the
other side.
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in which λfinalLDPE and λfinalPS correspond to the values given in table 3.3.

By increasing the relaxation time, we increase both the convected derivatives
and the last term of the constitutive equation 3.1, responsible for the second
normal stress difference of the model. Thus, we also increase the degree of
encapsulation.

Figure 3.23: Configuration of the layers at the end of the evolution on relaxation
times for a Giesekus model. The evolution parameter is s3 ≈ 0.01166.

The last result obtained with our continuation method corresponds to s3 ≈
0.01166. A little more than 1 % of the path has been done, and that is not
much! The configuration of the layers corresponding to the last calculation are
presented in Figure 3.23. We see that, even though only 1 % of the path to the
final value of s3 has been done, a relatively high degree of encapsulation has
been obtained.

We made an investigation in order to find the reason why we failed to reach
higher values of s3. It seems that the extra-stress field is well approximated (but
we do not present the results here). The only explanation we have found to the
failure of the calculation is that the deformation of the mesh is too important for
our remeshing technique. It is surprising that at only 1% of the continuation on
s3, we obtain a so large degree of encapsulation. We know that for s3 = 0, the
Giesekus model exhibits no normal stress differences, and the encapsulation is
clearly related to the increase of λ. But, which results would we obtain for s3 = 1
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if it was possible to reach such a large value of the continuation parameter?

In this chapter, we have adopted the assumption that second normal stress
difference is responsible for encapsulation. Thus the high degree of encapsulation
should be related to the value of the ratio N2/Tshear. In order to see how the
degree of encapsulation depends on the relaxation time λ, we plot in Figure
3.24 the ratio of the second normal stress difference and shear stress in a planar
shear flow as a function of s3 (and thus of the relaxation time λ). All other
parameters are those of the polystyrene in table 3.3. To select the value of γ̇,
we first calculate a mean value of the velocity in the die, and divide it by the
radius to estimate a mean value of the shear rate. We find < γ̇ >≈ 6.88 s−1.
To take into account the fact that the shear rate is larger along the walls, we
plot the results for < γ̇ >≈ 15 s−1.
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Figure 3.24: Ratio of the second normal stress difference and of the shear
stress as a function of parameter s3 that controls relaxation time λ and for
γ̇ = 15 (s−1).

For small values of s3 the ratio increases very fast. It reaches a maximum
at s3 ≈ 0.065, and then slowly decreases. For s3 = 0.01 we find 0.2174. That
means that when 1 % of the continuation on s3 has been performed, the degree
of encapsulation is nearly twice as large as what we would obtain for s3 = 1.
Thus we tried to follow a path in which we obtain very fast a high degree of
encapsulation that would later decrease if it was possible to continue the calcu-
lation. But actually, the calculation fails because of the too large deformation
of the mesh.

Note that the problem is essentially related to the first initial increase of the
normal stress differences with the relaxation time (see Figure 3.25).
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Figure 3.25: Second normal stress difference (continuous line), shear stress
(dashed line), and first normal stress difference (dotted line) as a function of
parameter s3 that controls relaxation time λ and for γ̇ = 15 (s−1).

3.4.3 Results for an Oldroyd-B calculation

There is one way to avoid the fast initial increase of the degree of encapsulation
with parameter λ. By putting αG in the Giesekus model to zero, we obtain
an Oldroyd-B model that exhibits no second normal stress difference, and thus
no secondary recirculation in a channel flow. The third step of the calculation
would then be divided into two sub-steps:

1. The relaxation times λ are increased, but αG is put to 0:

λLDPE =λfinalLDPEs3, s3 : 0→ 1,

λPS =λ
final
PS s3, s3 : 0→ 1.

2. Then, a fourth step is performed, in which the parameters αG are progres-
sively increased to their final values:

αG,LDPE =αfinalG,LDPEs4, s4 : 0→ 1,

αG,PS =α
final
G,PSs4, s4 : 0→ 1.

Unfortunately, the evolution on the relaxation times λ failed for s3 = 0.0389.
The corresponding configuration of the layers is represented in Figure 3.26. It
clearly appears that the swelling of polystyrene just after the separating edge is
very important (much more important than what is observed for the Newtonian
and Giesekus calculations). This is related to the large values of the first normal
stress difference of the Oldroyd-B model.

When one single fluid is extruded in a die, the swelling at the exit of the die
may be very important when the fluid exhibits large values of the first normal
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Figure 3.26: Configuration of the layers at the end of the evolution on relaxation
times for an Oldroyd-B model. The evolution parameter is s3 ≈ 0.0389.

stress difference. In this case, when LDPE and PS are brought together in the
die, each fluid tries to swell, and the strongest fluid (the fluid that exhibits the
largest first normal stress difference) wins. Here again, the strongest fluid is
polystyrene.

The reason why our calculation failed for small values of the relaxation time
λ, is that in the merging area, and close to the interface, the fluid particles are
submitted to a high elongation. This results in a thin layer of fluid in which
the axial component of the extra stress tensor is very large. We see in Figure
3.27 that the phenomenon is particularly important for LDPE, which cannot
swell. In order to capture the correct solution in that area, we should refine the
mesh close to the interface. But we need a so important refinement that the
computational cost would be prohibitive.

Actually, the Oldroyd-B model leads to numerical difficulties. In many cases,
the Giesekus model is easier to use, because it exhibits saturation effects: the
stresses cannot grow infinitely with this model.

3.4.4 Giesekus with a very large Newtonian component

A third attempt has been done to try to calculate the final flow with Giesekus
model. We have seen in section 3.4.2 that the very high degree of encapsulation
occuring at small values of λ with the Giesekus model may be related to the
large values of the ratio N2/Tshear for small values of the relaxation time.
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Figure 3.27: zz component of the extra stress tensor in both layers for an
Oldroyd-B model. The evolution parameter is s3 ≈ 0.0389.
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This problem may be avoided by artificially increasing Tshear. It may be
done by adding an artificial viscous component to the Cauchy stress tensor.
The relaxation time may then be increased to its final value. Then, the artificial
viscous component may be progressively cancelled in a last continuation.

In practice, we proceed as follows:

1. During the continuation on the relaxation times, the parameter ηN is put
to ten times its value given in table 3.3. Moreover, the shear thinning
character of the viscous component is cancelled by putting n to 1. We
have thus

λLDPE =λfinalLDPEs3, s3 : 0→ 1,

λPS =λ
final
PS s3, s3 : 0→ 1.

2. Then, a new continuation is required to progressively restore the parame-
ters given in table 3.3 for the viscous component. This is done as follows

ηNLDPE =10ηfinalNLDPE(0.1)
s4 , s4 : 0→ 1,

nLDPE =(1− s4) + nfinalLDPEs4, s4 : 0→ 1,

ηNPS =10ηfinalNPS(0.1)
s4 , s4 : 0→ 1,

nPS =(1− s4) + nfinalPS s4, s4 : 0→ 1.

Actually, the calculation fails during the continuation on λ at s3 ≈ 0.2. We do
not represent the examples of layer configurations for that calculation, for the
results are very similar to those of the Newtonian calculations. The fact that
the calculation fails indicates that the nonlinear character of the constitutive
equation also may be responsible of numerical difficulties. This problem proba-
bly may be solved by using a refined mesh for the calculations, but here again,
this would result in a very large increase of computational cost.

Compared to viscoelastic calculations, Reiner-Rivlin calculations give rise to
very few numerical problems. Moreover, their computational cost is small. We
present the results obtained with those calculations in section 3.5.

3.5 Reiner-Rivlin calculations

3.5.1 Strategy of resolution

In the Reiner-Rivlin calculations, the nonlinearities arise from the presence of
free surfaces, from the remeshing technique, and from the constitutive equation.

We separate the calculation of the final flow into three steps:

1. We calculate a flow without introducing any remeshing rule, and thus
without modelling the motion of the interface. For this calculation, we
also neglect second normal stress differences: ψ2(γ̇) = 0.
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Note that, here again, the fluids may flow across the interface (see section
3.4.1).

Because of the shear thinning character of the viscosity, this first step
already involves strong nonlinearities, and a continuation method is used
to calculate the flow. We progressively make the shear thinning character
of the fluids increase by making the power law index m vary from 1 to its
final value given in table 3.4. More precisely, we make a parameter s1 vary
from 0 to 1, and the power law index is calculated from that parameter
with the formula

m(s1) = (1− s1) +mfinals1,

in which mfinal is replaced by the corresponding value given in table 3.4.

2. The mobility of the interface is introduced in the calculations at the second
step. This step is equivalent to what has been done at the second step of
viscoelastic calculations (section 3.4.1).

3. The second normal stress difference is introduced in the model at the third
step of the calculation. For the Reiner-Rivlin model, the parameter ψ20 is
progressively increased with parameter s3:

ψ20(s3) = ψfinal20 s3, s3 : 0→ 1.

Note that, for this step, the nonlinearities are introduced both in the
constitutive and remeshing equations.

The parameters that will change from one calculation to another are the rel-
ative flow rates. We also perform a mesh convergence analysis. The parameters
of our calculations are summarized in table 3.5. The flow rates of calculation
“A” are identical to those used in our viscoelastic calculations.

Table 3.5: Relative flow rates of LDPE and PS for our calculations.

Calc. QLDPE QPS
mm3s−1 mm3s−1

A 276.67 69.17
B 448.33 69.17
C 82.50 90.83

3.5.2 Results for a first set of parameters

We first present the layers configuration for the Newtonian part of calculation
A in table 3.5 (upper part of Figure 3.28). As has been observed in Figure 3.22,
the layer rearrangement occurs close to the merging area, but after that, the
shape of the interface does not change along the die. It is interesting to remark
that the shape of the interface is very similar to the shape obtained with the
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MIX Newtonian calculation 3.22. This is surprising for the fluids of Figure 3.28
are shear thinning while the viscosities of the fluids in Figure 3.22 are nearly
constant.

With our modelling of the problem, we must introduce second normal stress
difference in the constitutive model to obtain a progressive encapsulation. The
lower part of Figure 3.28 represents the flow configuration when second normal
stress difference is introduced in the model.

Very similar results are obtained when the calculations are done on a refined
mesh (Figure 3.29). This may be better seen in Figure 3.30 where we compare
the output profiles obtained with Newtonian and Reiner-Rivlin models and for
coarse and refined meshes respectively. This means that good results may be
obtained with a relatively coarse mesh.

3.5.3 Results for other values of the flow rate

The results obtained for the flow rates corresponding to B in table 3.22 are
presented in Figure 3.31 for the refined mesh. They are in qualitative agreement
with results of calculation A: a rapid rearrangement occurs in the merging area;
then a slow encapsulation process takes place. Note that, in this case, the rapid
rearrangement in the merging area leads to larger deformations of the interface
than in case A, because the flow rates are different.

For calculation C, the flow rates are such that the swelling of polystyrene is
very important. For the rest, results are in qualitative agreement with calcula-
tions A and B.

3.5.4 Comparison with experiments

The flow rates we have used in our numerical calculations correspond to those of
some of the results presented by Han in his paper [Han73]. Han presents cross
sections of the LDPE/PS extrudates for various values of the flow rates (and in
particular for the flow rates used in our calculations). We compare in Figure
3.33 the extrudate cross sections with the corresponding calculated shapes of
the interface at the outlet section.

Discrepancies between the cross sections of Han and our outlet interface
profiles may be observed. The most striking difference between calculations
and experiments resides in the fact that the area occupied by polystyrene in
the calculations is always larger than in the experiments. This may easily be
explained. There is a relation between the relative flow rates, mean velocities
and areas at the outlet section. This relation may be written

QLDPE
QPS

=
< VLDPE > ALDPE

< VPS > APS
,

in which < V > is the mean value of z component of the velocity and A is the
area occupied in the cross section.

In all our calculations, the mean velocity of polystyrene is smaller than that
of polyethylene. But out of the die, the flow rapidly tends towards a plug flow,
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(a) Newtonian result

(b) Reiner-Rivlin result

Figure 3.28: Configuration of the layers for the Newtonian and Reiner-Rivlin
parts of calculation A (coarse mesh).
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(a) Newtonian result

(b) Reiner-Rivlin result

Figure 3.29: Configuration of the layers for the Newtonian and Reiner-Rivlin
parts of calculation A (refined mesh).
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Figure 3.30: Comparison of the output profiles for coarse (upper part) and refined
(lower part) meshes, and for Newtonian (left part) and Reiner-Rivlin (right part)
models.
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(a) Newtonian result

(b) Reiner-Rivlin result

Figure 3.31: Configuration of the layers for the Newtonian and Reiner-Rivlin
part of calculation B (refined mesh).
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(a) Newtonian result

(b) Reiner-Rivlin result

Figure 3.32: Configuration of the layers for the Newtonian and Reiner-Rivlin
parts of calculation C (refined mesh).
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Figure 3.33: Comparison of experimental results of Han [Han73] with the con-
figuration of the layers along the outlet section obtained with our numerical
calculations.
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and the velocity profile becomes flat in the whole cross section. Thus the mean
velocity becomes identical for both fluids. Consequently, in the extrudate, the
proportion of the cross section area occupied by PS is equal to its flow rate
divided by the total flow rate. In the die, PS occupies a larger proportion of the
cross section area.

Therefore, the comparison given in Figure 3.33 only may be qualitative. If
we observe the way polystyrene is surrounded by LDPE at the outlet section
and in the extrudate cross sections, we see that the degree of encapsulation is
approximately the same for each flow rate ratio. It is interesting to remark that
this result has been obtained without using any artificial trick, and without
manipulation of data.

This means that the estimation of second normal stress difference by a
Giesekus fit seems to give good results. This is surprising for we do not know so
much about second normal stress difference. This quantity is small compared
to other stresses in shear flows. Consequently, it is very difficult to measure
with precision. Moreover one does not know what is the microscopic origin of
that quantity. But it seems that by fit other rheometrical data with a Giesekus
model, one is able to correctly reproduce N2 effects.

A similar observation has been done by Benôıt Debbaut et al. [DADH97].
They study the development of secondary recirculations caused by second nor-
mal stress difference both experimentally and numerically. They use a five
modes Giesekus model for their calculations, and obtain a very good agreement
though they only fit viscosity, G′ and G′′.

This indicates that the term in “T · T ” of the Giesekus consitutive equation
correctly models the mechanism by which the second normal stress difference
is related to the other stresses in molten polymers and for shear flows. And it
explains why by fit the available shear data, one also catches information on the
second normal stress difference.

PS

LDPE

PS

LDPE

Figure 3.34: Probable rearrangement of an initially flat interface at the exit of
a die.

Note that, the layer rearrangement that occurs at the exit of the die probably
leads to a further increase of the degree of encapsulation. To illustrate this
intuition, we plot in Figure 3.34 the probable rearrangement we would observe
at the exit of the die if the interface was initially flat, and each fluid occupied
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50 % of the section. The higher swelling of LDPE probably would lead to a
curvature of the interface with a convex shape for polystyrene layer.

3.6 Giesekus and Reiner-Rivlin models

After having performed numerous calculations with the Reiner-Rivlin model,
we would like to know whether this model correctly reproduces the viscoelastic
behaviour of the Giesekus model. There are several differences between Giesekus
and Reiner-Rivilin models: Reiner-Rivlin model does not exhibit first normal
stress difference, its extensional viscosity is identical to that of a generalized
Newtonian fluid, it exhibits no memory effects.

Except in the merging area, extensional effects are not very important for the
flows we study in this chapter. They are more a source of numerical difficulties
than a factor influencing encapsulation. However, we have seen in section 3.4.3
that first normal stress difference may have an important effect on layer rear-
rangement. But the effect of extensional stress and first normal stress difference
has only been observed in calculations with Oldroyd-B model. Giesekus mo-
del is nonlinear and exhibits saturation effects. Consequently extension stresses
and normal stresses are smaller with Giesekus model than with Oldroyd-B mo-
del and their influence on encapsulation probably will be smaller with Giesekus
model.

Another difference between Reiner-Rivlin and Giesekus models resides in the
fact that the Reiner-Rivlin model does not exhibit memory effects. With vis-
coelastic models, memory effects may have a large influence on flow kinematics
if relaxation times are large compared to the rate of change of flow character-
istics. For example, in our flow, we may compare relaxation times to the mean
residence time of the fluids in the die. Unfortunately, the result of that com-
parison indicates that memory effects play an important role in the flow (the
ratio relaxation time / residence time is approximately 4 for calculation A). This
may be interpreted as follows: a fluid particle brought into the die, exits before
having adapted its stresses to the flow kinematics.

But in the former comparison, we did’nt take into account the nonlinear
character of the constitutive equation. Most nonlinear viscoelastic models ex-
hibit saturation effects. This is the case for the Giesekus model. In the models
exhibiting such saturation effects the parameter λ no longer represents a relax-
ation time. Actually the more the model enters in the nonlinear domain, the
shorter its response time to a modification of the flow kinematics becomes. In
our case, this means that the response time decreases with the shear rate.

To illustrate this point, we plot in Figure 3.35 the transient evolution of the
second normal stress difference as a function of time for various values of the
shear rate (for that calculation, we used the parameters of PS in table 3.3). We
see that for all values of time, N2 is an increasing function of the shear rate.
But the most interesting thing that appears in Figure 3.35, is that the regime is
reached for smaller values of time when the shear rate is high. For γ̇ = 25 s−1

the regime is attained after aproximately 0.25 s. For γ̇ = 5 s−1 the regime is
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Figure 3.35: Second normal stress difference as a function of time t for various
values of the shear rate: γ̇ = 0.04, 0.2, 1, 5, 25 (s−1) respectively.

attained after aproximately 0.5 s. Only for very small values of the shear rate,
the time needed to reach the regime is approximately equal to λ.

In calculation A, the mean value of the shear rate is approximately 7 s−1.
Thus, the response time of the Giesekus model is probably smaller than 0.5 s.
This value is clearly smaller than the mean value of the residence time (≈ 1.2
s). Moreover, if we accept the assumption that encapsulation occurs mainly
along the walls where the shear rate and residence time are larger, we also may
accept that the response time of the fluid particles responsible for encapsulation
is large compared to the time they need to respond to the flow kinematics.

We conclude that, for the slow encapsulation process of Everage, the Reiner-
Rivlin model probably gives results similar to what we would obtain with the
Giesekus model if it was possible to make the calculation with that viscoelastic
model.

3.7 Conclusions

In this chapter, we have presented the results of a numerical investigation of the
influence of second normal stress difference on encapsulation.

By calculating transient and static two-layer channel flows with Reiner-
Rivlin model, we show that second normal stress difference is the origin of
secondary recirculations that cause interface motion. In that case, it appears
clearly that N2 is the key factor to explain interface motion.

Then, we simulate the experimental observations of Han [Han73] with Reiner-
Rivlin model. With this model, we obtain a good agreement between experi-
mental observations and numerical calculations. The encapsulation obtained
by our calculations is related to second normal stress difference only. Indeed,
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Reiner-Rivlin model does not exhibit first normal stress difference, and no slow
encapsulation process have been obtained with Newtonian model. This result
is new: in former calculations of Uwaji, PTT model exhibited both first and
second normal stress differences. Moreover, the fits of Uwaji only poorly ap-
proximated the behaviour of real fluids. Note that calculations done with the
Oldroyd-B model indicate that the layer rearrangement observed in the merg-
ing area is influenced by the viscosities and first normal stress differences of the
fluids.

The rheological data of Han are used to fit the parameters of Giesekus model.
But we have no experimental measurements of the second normal stress differ-
ence. Thus, in order to fit the parameters of Reiner-Rivlin model, we propose a
two-step procedure in which the missing data are produced by a Giesekus fit.

To calculate the motion of the contact line between the interface and the
wall, we propose a “line dynamic condition” in which the value of the contact
force is used instead of the velocity in the kinematic condition. The problems
related to the curvature of the wall have been solved.

Let us remark that with both Oldroyd-B and Giesekus models, numerical
difficulties related to the viscoelasticity of the models prevent us to simulate
realistic problems. In comparison, Reiner-Rivlin model is in many cases a very
interesting model: it does not lead to important numerical difficulties and is
cheap because no extra-stress field is needed to calculate the flow.



Conclusions

In this first part, we have investigated the behaviour of multilayer flows. In chap-
ter 2 the stability of multilayer Newtonian flows has been studied by transient
calculations. Chapter 3 was devoted to the study of the influence of second
normal stress difference on encapulation. This second investigation has been
done with time independent calculations.

In chapter 2 we show that it is possible to study the stability of multilayer
flows by transient numerical calculations. The calculations allow us to compare
results of linear stability analyses and transient simulations, and to investigate
the nonlinear behaviour of growing perturbations. It is also possible to reproduce
with transient calculations some of the flow regimes experimentally observed in
axisymmetric flows. In particular, the bamboo waves regime may easily be
obtained. In this flow regime, the thin-layer effect stabilizes long wavelength
perturbations and compensates capillary instabilities while short wavelength
instabilities are compensated by surface tension.

Encapsulation phenomena are often observed experimentally with Newto-
nian flows in pipes, and the bamboo waves regime may be the result of an
encapsulation. Those encapsulations are probably the result of an interfacial in-
stability, related to inertia. In order to check that assumption, three-dimensional
multi-layer transient flows should be calculated. In view of their very high com-
putational cost, such calculations have not been performed.

In chapter 3, we try to check whether encapsulation may be related to the
secondary recirculations caused by second normal stress difference in channel
flows. An advantage of this possible explanation, is that it may be checked by
performing time-independent flow calculations. It appears that the rapid rear-
rangement observed in the merging area is mainly influenced by the viscosities
and first normal stress differences. But the slow encapsulation process is only
caused by the second normal stress difference exhibited by viscoelastic fluids.
This slow encapsulation process generally leads to higher degrees of encapsula-
tion than the rearrangement of the layers observed in the merging area.

One sometimes observe coextrusion flows in which encapsulation and inter-
facial instabilities occur together. For example Wilson and Khomami report
experiments in which the extrudate exhibits encapsulation and wavy interfaces
[WK93a]. But this does not prove that encapsulation is a consequence of inter-
facial instability and it is interesting to remark that Han does not report any
wavy interface in his extrudates [Han73].
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We conclude that the encapsulations observed in Newtonian and viscoelastic
multi-layer flows respectively are, in general, caused by two distinct mechanisms.
For Newtonian flows, the thin-layer effect is responsible for the phenomenon,
while in viscoelastic flows, second normal stress difference has to be incrimi-
nated. Though, in both cases, the more viscous fluid is often encapsulated by
the less viscous one.
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Numerical calculation of
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Introduction

In many process flows, the extensional behaviour of polymer solutions or melts
is of critical importance. For example, it is now well established that con-
traction flows are, in many cases, strongly influenced by extensional behaviour
[DC88, PCb]. Therefore, the measurement of extensional stresses is a subject
of investigations for rheologists. The measurement of extensional stresses leads
to important experimental difficulties, especially for polymer solutions that ex-
hibit generally smaller viscosities than polymer melts. Recently, the filament
stretching device has allowed to measure steady state values of the extensional
viscosity [TS93, OS94]. The principle of the extensional rheometer is to try to
expose the sample to steady uniaxial extensional flow.

But among other difficulties, the fact that the flow only approximates uni-
axial extensional flow often prevents us to give a straightforward interpretation
of the measurements. Of course, this problem also occurs in other types of rheo-
metrical experiments. Therefore, an analysis of the flow can help to improve
the interpretation of the experimental data. This type of analysis has already
been made both by experimental observations and by numerical simulations
[SDK91, PCc, PN95, SM96a, MC87, Cas96, SAM96].

In chapter 4, we present results of a numerical study of the filament stretching
device. In that investigation, we try to derive the optimal operating conditions
for the device. we also describe some of the phenomena that may lead to difficul-
ties in the interpretation of the measured quantities. For example, we show that
the device leads to non-uniformities of the stretching, both in time and space.
We also investigate the effects of the material parameters and of the initial gap
between the plates, and comparisons are done with experimental observations.
Finally, we propose a way to improve the estimates of the extensional viscosity
given by the device.

Finally, the flow in the filament stretching device can be used as an inves-
tigation tool. Orr and Sridhar observe a rapid drop of the tensile stress in the
filament when extension ceases. They interpret this rapid drop as a vanishing of
a viscous polymer stress at the end of stretching [OS96]. Birefringence experi-
ments indicate that there is no unique relation between the stress in the filament
and the elongation of the macromolecules [DS97, DSMS97]. Those results may
be reproduced by stochastic calculations of extensional flows with FENE model.
Those stochastic calculations lead to the developement of a new closure of the
FENE model: the so-called “FENE-L” model [LHJ+97, LKLon].
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In chapter 5 we propose a heuristic multimode model based on a fractal in-
terpretation of the macromolecules. This model allows us to reproduce the rapid
drop of tensile stress in the filament and the results of birefringence experiments.
We also show that dispersity and nonlinearity are two common aspects of the
FENE, FENE-L and multimode models, and that they explain the behaviour
of those models in extensional flows.



Chapter 4

The filament stretching

device

In this chapter, we present the results of a numerical study of the filament
stretching device used by Tirtaatmadja and Sridhar [TS93], Solomon and Muller
[SM96a] and McKinley and al. [McK95, Cas96, SAM96]. The device and the
free-surface profiles are schematically shown in Figure 4.1. The FENE-CR con-
stitutive equation is selected and we use the material parameters identified by
McKinley on the basis of steady shear data. The model is then used to simulate
the flow in the filament stretching rheometer.

We present the results obtained with viscoelastic and Newtonian models re-
spectively. The effects of surface tension, gravity and inertia on the rheometrical
flows is also investigated for those two models. By a closer observation of the
rheometrical flows, we show that purely uniaxial extensional flows are never
produced by the device.

Comparisons between numerical calculations and experimental observations
are presented for various sets of material parameters and initial gaps between
the plates. A good qualitative agreement is obtained between numerical results
and experiments. Finally, the influence of the nonlinearity of FENE-CR model
is investigated.

The results presented in this chapter have to be published in the Journal of
Non-Newtonian Fluid Mechanics [SL97].

4.1 Numerical simulation of the stretching de-

vice

Now, we describe the boundary conditions used to calculate the time dependent
flow of a viscoelastic fluid in the filament stretching apparatus proposed by
Sridhar et al. [TS93]. In such a device, a syringe is used to put a droplet of fluid
between the plates. Because of surface tension, the fluid sample has initially a
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Figure 4.1: Example of filament stretching device: (a) fluid sample; (b) fixed
lower plate; (c) moveable upper plate; (d) force transducer; (e) ball screw; (f)
servo motor; (h) computer, motion controller (From [SAM96].)

cylindrical shape. Then, it is stretched between the plates. The shape of the
fluid column and the force measured along the lower plate as a function of time
can be used for the characterization of the extensional viscosity of the sample
(Figure 4.1). The basic parameters of the device are shown in Figure 4.2.

The typical function of interest for the rheometer is the Hencky strain as a
function of time. The Hencky strain is defined as the logarithm of the extensional
deformation of the fluid sample:

εpl
4
= ln

[

L(t)

L0

]

, (4.1)

where L(t) is the length of the filament, and L0 = L(0); the subscript “pl” has
been added for the deformation is estimated from the distance between the
plates. R0 is the initial radius of the filament and R(t) is the minimal radius as
a function of the time.

By imposing an exponential rate of separation between the two plates, i.e. by
assuming that L(t) = L0 exp(ε̇plt), one hopes to do experiments under constant
stretch rate conditions rather than under constant force. The constant stretch
rate is denoted by ε̇pl, and the “plate estimate” of the Hencky strain becomes a
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Figure 4.2: Schematic of the filament stretching rheometer.

linear function of time:

εpl = ε̇plt. (4.2)

For the consitutive equation of the viscoelastic component of the Cauchy
stress tensor, we chose the FENE-CR model introduced by Chilcott and Ralli-
son [CR88] (see section 1.2.4). Our mathematical viscoelastic problem consists
of finding the velocities, the pressure and the configuration tensor in the do-
main Ω such that the conservation (i.e. incompressibility and momentum) and
constitutive equations are satisfied under suitable boundary conditions for the
velocities and the configuration tensor.

In most calculations, we neglect inertia and gravity. With this assumption,
the flow is not only axisymmetric but also exhibits symmetry with respect to an
horizontal midplane between the plates. In the next section, we will demonstrate
that we can neglect gravity and inertia if the extensional viscosity is very large
compared to the stresses induced by shear viscosity. Finally, we also demonstrate
that the same condition has to be satisfied in order to obtain useful experimental
results from the stretching device. Therefore, the computational domain is
reduced to the area depicted in Figure 4.3.

In order to describe the boundary conditions of the viscoelastic free surface
problem, we consider the following subsets of the boundary ∂Ω:

• ∂ΩPLATE, the upper side of the domain, represents the moving plate where
the velocity is prescribed. A no-slip condition is applied and the velocity
is imposed as follows

w =
ε̇plL0

2
exp(ε̇plt),

u = 0,
(4.3)

where L0 is the initial length of the whole sample.
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Figure 4.3: Computational domain and definition of the boundaries for the tran-
sient calculation of the filament stretching rheometer.

• ∂ΩSYM, is the axis of symmetry. Symmetry conditions are applied, i.e.
vanishing normal velocity and tangential stress.

• ∂ΩBOTTOM, is the lower boundary on which symmetry conditions are
applied.

• ∂ΩFREE, is the free-surface. Along that boundary, surface tension results
in a normal force proportional to the sum of the curvatures of the surface.
A kinematic condition is used to calculate the motion of the free surface.

• ∂∂ΩUP, is the point defined by the intersection of the free-surface and
the upper moving plate. The position of this point of the free-surface is
prescribed to be attached to the end of the plate. In other words, the
free-surface is not allowed to slip along the plate.

• ∂∂ΩBOTTOM, is the point defined by the intersection of the free-surface
and the horizontal midline. At this point, one prescribes that the free-
surface is vertical.

Initially, the computational domain is rectangular, and the fluid is assumed
to be at rest. That means that v = 0 and T V = 0 for t < 0. The second
equality involves that for the initial A, we take the tensor unity.

A mixed Finite Element Method (FEM) with the configuration tensor, the
velocity, the pressure and the geometrical unknowns as variables, is used. Stan-
dard Galerkin weak formulation is derived with the 4× 4 element developed by
Marchal and Crochet: the pressure, the velocity and the configuration tensor
are approximated by linear, quadratic and 4×4 sub-linear interpolations respec-
tively. However, we observe that we obtain the same results by using quadratic
interpolation for the configuration tensor. Such a choice is efficient in terms of
CPU and memory requirements. Mesh refinement analysis has been performed.
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For the time integration, we use an adaptive predictor-corrector time-step-
ping scheme. At each time step, a prediction of the solution is calculated with
the Euler explicit scheme. This first estimate is then corrected with the Euler
implicit scheme. The implicit equations are solved by Newton’s method. The
next time step is then selected such that the difference between predicted and
corrected solutions is kept under a specified value. The initial shape of the
domain is a rectangle, and the sample is at rest before the beginning of the
stretching.

A moving grid algorithm is used to avoid overdistorded elements due to the
boundary motion and to maintain a good nodal distribution in the deformed
mesh. We solve the Thompson transformation in order to take advantage of the
smoothing properties of this elliptic operator. Standard Dirichlet boundary con-
ditions are applied on the coordinates, except along the axis of symmetry where
Neumann conditions are introduced for the tangential component. Furthermore,
a slight modification of the remeshing rule near the upper plate is introduced
in order to maintain a high density of elements where the free-surface shape
is more complex. A quadratic continuous representation is used for both the
geometrical unknowns and the coordinates.

4.2 Numerical Results

4.2.1 Material parameters

In most calculations, inertia and gravity are neglected and the parameters of
both viscoelastic and Newtonian calculations are summarized in Table 4.1. We
use material parameters identified on the basis of steady shear data [McK95].

4.2.2 Dimensionless numbers

Now, let us define the dimensionless numbers that can be used for analysing the
numerical results. The transient Trouton ratio Tr scales the transient exten-
sional viscosity to the shear viscosity. The Deborah number De characterizes
the elastic forces with respect to the viscous terms. The capillary number Ca
balances viscous and surface tension forces. The Bond number characterizes the
ratio of gravitational forces to capillary forces. Finally, the Reynolds number IR
characterizes inertia.

Tr =
η+

η0
, De = λε̇pl, Ca =

ηε̇plR

γ
, Bo =

ρgLR

γ
, IR =

ε̇plL
2ρ

η
.

It is obvious that the extensional viscosity is the most appropriate quantity
to the study of the present flows. Therefore, we use the ratios IR/Tr, Ca.Tr and
Bo/(Ca.Tr) to characterize inertia, surface tension and gravity with respect to
extensional stresses.
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Table 4.1: Material parameters for a Polyisobuthylene/Polybutene Boger fluid
[McK95].

ρ (density) 890 (kg.m−3)
ε̇pl (stretch rate) 1.6 (s−1)
L0 (initial length) 2 10−3 (m)
R0 (initial radius) 3.5 10−3 (m)
γ (surface tension coefficient) 28.9 10−3 (N.m−1)

Newtonian calculations
η (shear viscosity) 98 (Pa.s)

FENE-CR calculations
η (shear viscosity) 105 (Pa.s)
ηN (solvent viscosity) 35.7 (Pa.s)
ηV (polymer viscosity) 69.3 (Pa.s)
λ (relaxation time) 2.0 (s)
L2 (extensibility dumbbell coefficient) 4325.5

4.2.3 Stretching flow of a viscoelastic fluid

The shape of the filament, obtained by numerical simulation with the FENE-CR
model, is drawn at different times of the calculation in Figure 4.4. For relatively
large values of the time t, we see that the filament nearly has the shape of a
cylindrical pillar which enlarges near both plates. The formation of the pillar
may be explained by the high extensional viscosity of the fluid:

• As a consequence of the high extensional viscosity, a small increase of the
deformation leads to a dramatic increase of the stress. This effect tends
to distribute the deformation equally in the filament. Therefore, the fluid
sample tends to a cylindrical shape, and one also tends to a perfectly
extensional flow.

• On the other hand, the high extensional viscosity of the fluid leads to a
sucking effect along the plates: the force in the filament is very important
and draws away the fluid adhering to the plates. It follows a very steep
transition from the cylindrical portion to the adhesion area, and a very
strong deformation of the mesh in that region.

The sucking effect is a source of numerical difficulties. The modification of
the remeshing rule has been introduced in order to maintain a high density of
elements in the transition area. Nevertheless, this modification of the remeshing
rule was not sufficient to avoid a very important distortion of the elements close
to the upper plate, and all viscoelastic calculations failed before the time reached
the maximum time of the experimental data. In Figure 4.5, we see that some
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Figure 4.4: Viscoelastic calculation: deformation of the sample as a function of
the Hencky strain.
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elements close to the upper plate become almost triangular at the end of the
calculation.

As suggested by a referee, we also believe that the sucking effect may be
connected to the instabilities observed by McKinley where the fluid forms fibrils
near the end plates [SM96b]. However, when such instabilities are present, the
flow does not keep its symmetry around the axis. Therefore, we are unable to
predict such phenomena with our method.

mesh
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nbd  =
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200
400

xmin  =
xmax  =
ymin  =
ymax  =

-0.108E-02
 0.458E-02
 0.295E-01
 0.365E-01 *

Figure 4.5: Viscoelastic calculation: closeup view of the mesh at εpl = 3.52.
The remeshing rule minimizes the distortion of the elements, when the suction
effect takes place near the plate. Nevertheless, som quadrilateral elements nearly
degenerate in triangles.

We also analyse the profile of the extensional component of the tensor A in
Figure 4.7. We plot the ratio Azz as a function of r on the mid-plane section.
We see that the stretching is more important along the free surface. This effect
is related to the non purely extensional flow at the beginning of the stretching:
the fluid located close to the free surface must follow the deformation of the free
surface and is submitted to an axial deformation in the middle and a radial one
close to the plates.

The almost perfect extensional character of the flow can be observed on the
curve of the minimum filament radius as a function of Hencky strain, in Figure
4.8. Close to the end of the numerical simulation, the slope of the curve tends
to the slope of the theoretical dashed line corresponding to a perfect extensional
flow. However, the slopes of the two curves are quite different at the early stages
of the stretching. Let us observe that the inflexion of the curve at εpl = 1.6
probably is the sign of the transition from a more complex flow to an almost
perfect extensional flow. In fact, the same observation can be made by analysing
the different shapes of Figure 4.4.

4.2.4 Stretching flow of a Newtonian fluid

In Figure 4.9, we draw the shape of the filament obtained for a Newtonian fluid
at various values of the Hencky strain. The contours of the free surface are very
different than the ones obtained with the viscoelastic model. We no longer see
any cylindrical portion. The radius varies everywhere along the filament, and
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Figure 4.6: Viscoelastic calculation: Azz for εpl = 2.24 is represented with
isolines (lines of equal values). The interval of Azz between two consecutive
lines is 10. The maximum value of Azz is located on the lower right corner of
the sample. This may be better seen in Figure 4.7.
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Figure 4.7: Evolution of Azz as a function of the radius along the symmetry
plane for εpl = 2.24.
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Figure 4.8: Viscoelastic calculation: minimum filament radius as a function of
the Hencky strain. The dashed line represents the theoretical evolution of the
radius for a perfectly uniaxial extension. It is a fair approximation of the real
behaviour for large values of the Hencky strain.

has a minimum on the symmetry plane. Similarly, the numerical difficulties due
to the suction effect do not appear in this case (Figure 4.10).

In Figure 4.11, we give the minimum filament radius as a function of time.
The curve of the minimum radius decreases really faster than the line we could
obtain for a purely extensional flow. It follows that the Newtonian flow is very
different from the uniformly extensional stretching it previously was assumed
to be. Therefore Spiegelberg and al. [SAM96] introduced a simplified lubri-
cation analysis to study the stretching of a Newtonian fluid. They provide an
estimate of the effective extension rate, ε̇SAM ≈ 3ε̇pl/2 from the imposed value
ε̇pl. In Figure 4.11, we found an excellent agreement between the estimate from
the lubrication theory and our large scale calculations at the beginning of the
stretching. Due to the assumptions of the simplified model, it is quite normal
that we observe discrepancies at larger values of the stretching.

4.2.5 Inertia, capillarity and gravity

In this section, we show that we can neglect inertia and gravity in most calcula-
tions. It is clear that if inertia and gravity are taken into account, the filament
is not divided by a horizontal symmetry plane. Therefore, the axisymmetric
calculation has to be performed on the whole filament, which implies an in-
crease of CPU and memory requirements by a factor two. We consider both the
viscoelastic and Newtonian cases studied in the previous sections.

• Using a viscoelastic model, we first perform the calculation neglecting
inertia and gravity. Then, we calculate the same problem, taking into
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Figure 4.9: Newtonian calculation: deformation of the sample as a function of
the Hencky strain.

POLYFLOW (3. 3. 0) / step #288, time =  0.2880000E+01                       
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Figure 4.10: Newtonian calculation: closeup view of the mesh at εpl = 4.608.
The deformation of elements remains acceptable.
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Figure 4.11: Newtonian calculation: minimum filament radius as a function of
the Hencky strain. The dashed line represents the theoretical evolution of the
radius for a perfectly uniaxial extension while the dotted line gives the results
predicted with the lubricated model.

account inertia and gravity. In Figure 4.12, we give the force measured on
the lower plate as a function of time for both cases. A detailed analysis of
the results shows that the shift between the two curves is approximately
equal to the weight of the sample divided by two, and is small compared
to the value of the force.

• Let us now perform the same numerical experiments with a Newtonian
model. Results are given in Figure 4.13. The shift between the two curves
is again approximately equal to the sample weight divided by two. We
observe that the force measured on the lower plate for the calculation
without inertia and gravity decreases very quickly and that the extensional
force becomes much smaller than the value of the sample weight at the
end of the stretching. Now, if we take inertia and gravity into account,
this fact leads to a negative total force for large values of the time.

Inertia and gravity may be neglected in the first calculation with a viscoelas-
tic model, but not in the second with a Newtonian one. This observation is
related to the fact that the extensional viscosity of the viscoelastic fluid is very
important compared to its shear viscosity, which results in high Trouton ra-
tios, while the extensional and shear viscosities of a Newtonian fluid are related
by a constant Trouton ratio. Inertia terms are neglectable in our calculations:
the maximum value of IR/Tr is approximately 0.2 at the end of the Newto-
nian stretching. The effect of gravity is very small in viscoelastic calculations
(Bo/(Ca.Tr) ≈ 10−2) and may be important for the Newtonian calculations
(Bo/(Ca.Tr) ≈ 4 at the end of the calculation).
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Figure 4.12: Viscoelastic calculations: force measured on the lower plate as a
function of the Hencky strain. The dashed and the continuous lines give the
results when inertia and gravity are taken into account or neglected repectively.
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Figure 4.13: Newtonian calculation: force measured on the lower plate as a
function of the Hencky strain. The dashed and the continuous lines give the
results when inertia and gravity are taken into account or neglected repectively.
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A similar conclusion can be drawn for the capillary forces: the dimensionless
group Ca.Tr ranges from 20 to 400 for the viscoelastic calculation, while at the
end of the stretching of the Newtonian fluid, Ca.Tr is approximately 1.

We conclude that when the fluid exhibits strain hardening, the minimum
radius of the filament decreases approximately as for a uniaxial extensional
flow. But it is difficult to find a good interpretation of the force measured along
the lower plate in other cases. Therefore, inertia, capillarity and gravity may be
neglected for all cases where the extensional rheometer is able to produce useful
results (i.e. when extensional viscosity is high).

4.2.6 Improved estimate of the extensional viscosity

The main quantity of interest from the experimental data provided by the fil-
ament stretch rheometer is the extensional viscosity. In order to estimate this
quantity, one measures F , the normal force applied to the lower plate. Assuming
that the flow is close to uniaxial extension at the median plane, the extensional
tension inside the filament is then estimated by

τ ' F

πR2
, (4.4)

where R is the radius of the filament. Finally, approximating the extension rate
by the stretch rate ε̇pl, one is able to calculate an extensional viscosity by

η+pl+ '
τ

ε̇pl
. (4.5)

In fact, the flow is not purely extensional (in particular, at the beginning
of the stretch). Only the middle of the domain is in extension, and the local
extension rate in the middle of the sample is larger than the Hencky strain
rate ε̇pl. A central question is of course to determine what such an estimate
means. The problem can be addressed by the numerical simulation of the whole
experiment. It can also be addressed by a better estimate of the extension rate
along the center line. For example, we consider only a small material cylindrical
part of the filament. If we define l as the length of this cylinder, the volume
conservation law leads to the following relationship:

lR2 = l0R
2
0.

Therefore, one is able to derive a better approximation for both the extension
strain and the extension rate:

εrad ' ln
l

l0
= ln

R20
R2

,

ε̇rad ' −2
Ṙ

R
. (4.6)
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The subscript “rad” used to denote the new estimates of the extensional de-
formations denotes a “radial” estimate. A second estimate of the extensional
viscosity can be written as

η+rad ≈
τ

ε̇rad
. (4.7)

The definition of this estimate can be clearly correlated with the work of
Solomon and Muller [SM96a] who demonstrate the difference between radial
and axial measures of strain rate.

Finally, a third estimate of the extensional viscosity is provided by the lu-
brication model of Spiegelberg and al. [SAM96]

η+SAM ≈ 3 +
R20
L20

exp

(

− 7εpl

3

)

. (4.8)

εpl

η+

η0

6543210

1000

100

10

1

Figure 4.14: Newtonian calculation: estimated extensional viscosities as a func-
tion of the Hencky strain. The continuous and the dashed lines give the exten-
sional viscosity estimated with the “plate” and “radial” estimates of the extension
rate. The two dotted lines give respectively the theoretical Trouton ratio (Tr = 3)
and the results given by the lubricated model.

In Figure 4.14 the extensional viscosities of a Newtonian fluid as a function
of the Hencky strain is drawn from calculations in which gravity and inertia
terms have been neglected, using (4.5) and (4.7). We also draw the curve of
the lubrication model using (4.8). One can observe that the slopes of all esti-
mates of extensional viscosity are approximatively similar. However, the first
approximation is distant from the horizontal line corresponding to the Trou-
ton ratio. Therefore, the second estimate of the extensional strain rate appears
to be more realistic. We also observe that the lubrication theory agrees with
our improved estimate of the Trouton ratio at the beginning of the stretching.
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Figure 4.15: Viscoelastic calculation: estimated extensional viscosities as a func-
tion of the Hencky strain. The continuous and the dashed lines give the exten-
sional viscosity estimated with the “plate” and “radial” estimates of the extension
rate. Both curves are almost similar, excepted for initial values of the Hencky
strain. The dotted line corresponds to the theoretical results we would obtain
with a perfectly uniaxial extensional flow.

The comparison of our two estimates of the Trouton ratio has also been done
for the viscoelastic fluid in Figure 4.15. It demonstrates that both approxima-
tions of the extensional viscosities are similar for large times. ACtually, they
converge towards the theoretical value, and this proves that the device gives
good results for viscoelastic fluids. Some people have proposed an approach to
avoid the nonuniformities of the radial Hencky strain rate during the stretching
[SM96a, SAM96] by selecting a modified evolution for the velocity of the upper
plate. (A similar approach is used for the calculations presented in section 4.3.)

4.2.7 Comparison with experimental results

In Figure 4.16, we compare the forces as a function of time for a viscoelastic fluid,
obtained respectively by the numerical calculations and by the measurements
of McKinley. The large discrepancy at the initial times is due to the delay (100
ms) of the measurement device. The high value of the force at the beginning
of the stretching is also explained by the poorly extensional character of the
sample deformation.

Now, let us compare in Figure 4.17 both the minimum filament radius as a
function of time obtained by the numerical calculations and by image analysis
of the experiments. One obtains a very good qualitative agreement and in
particular, the numerical simulation reproduces the slope change observed in
experimental data.

In Figure 4.18, we investigate the influence of the material parameters of the
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Figure 4.16: Comparison with experimental results: force to be exerced on the
plate as a function of time. The lines and the symbols give the numerical results
and the experimental data respectively.
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Figure 4.17: Comparison with experimental results: minimum filament radius
as a function of time. The lines and the symbols give the numerical results and
the experimental data respectively.
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constitutive equation for different kind of fluid samples. In particular, we also
perform the same calculation for the fluid defined in Table 4.2.

Table 4.2: Material parameters for a Polyisobuthylene/Polybutene [McK95]
Boger fluid.

η (shear viscosity) 98 (Pa.s)
ηN (solvent viscosity) 32.67 (Pa.s)
ηV (polymer viscosity) 65.33 (Pa.s)
λ (relaxation time) 2.9 (s)
L2 (extensibility dumbbell coefficient) 4325.5

For εpl > 1, the curves obtained with the numerical calculation are similar
to the experimental data given by McKinley.

In Figure 4.19, we also investigate the effect of the initial gap between the
plates. The major difference between the curves occurs in the area εpl < 1,
and consists mainly of a shift of the initial value. This phenomenon is due to
the more non-extensional character of the deformation at the beginning of the
stretching when the gap is small. Qualitatively, the influence of a modification
of the initial gap is in good agreement with experimental results.

4.3 Extensibility of the molecules

Until here, the viscoelastic calculations have been done with the FENE-CR
model, and with L2 = 4325.5. For such a large value of the extensibility of
the molecules, the behaviour of the FENE-CR model is very similar to the
behaviour of an Oldroyd-B model. In this section, we perform the calculation
of the stretching device using several values of L2. We compare the estimates
of the extensional viscosities obtained from the finite element calculations, with
the estimates obtained from a purely uniaxial extensional flow.

Such a comparison is meaningless if the effective strain rates are different
in the finite element, and in the theoretical calculations. We already have seen
that the estimate of the extensional viscosity may be improved by the use of a
radial estimate of the Hencky strain, and of the extension rate.

Another way to improve the estimate of the extensional viscosity, is to adapt
the velocity of the upper plate in such a way that the minimum radius decreases
exponentially with time. This approach already has been investigated experi-
mentally [SM96a, SAM96]. Numerically, this is easier to do than experimentally.
To the set of governing equations, we add an equation expressing the constraint
on the radius of the filament. Another unknown is added to the problem: the
upper plate velocity Vpl. In our formulation, Vpl is the Lagrange multiplier of
the constraint imposed on the radius.

For such calculations, the “plate” estimate of the stretch rate may be calcu-
lated from the velocity of the upper plate, and the distance between the upper
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Figure 4.18: Comparison with experimental results for different fluids: estimated
extensional viscosities as a function of the Hencky strain. The upper and lower
parts give the numerical results and the experimental data respectively.
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Figure 4.19: Comparison with experimental results for different initial lengths:
estimated extensional viscosities as a function of the Hencky strain. The upper
and lower parts give the numerical results and the experimental data respectively.
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plate and the axis of symmetry:

ε̇pl =
Vpl
hpl

.

The evolution of ε̇pl as a function of the radial Hencky strain εrad = ε̇radt is
plotted for an Oldroyd-B model in Figure 4.20.
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Figure 4.20: Evolution of the “plate estimate” of the Hencky strain rate ε̇pl as a
function of the Hencky strain εrad for an Oldroyd-B model.

For a purely uniaxial extensional flow, we would have a horizontal straight
line ε̇pl = 1.6 (s)−1. But at the beginning of the stretching, a small increase
of the distance between the plates results in a large variation of the minimum
radius. This explains why ε̇pl is small in that area. The maximum of ε̇pl close
to εrad = 3 corresponds to the transition towards the strain hardening.

In order to compare the results of our finite element calculations with the
results for a purely uniaxial extensional flow, we also introduce a correction for
surface tension. To calculate the new estimate of the mean value of σzz on the
symmetry plane, we use the following formula:

σzz =
F − 2πRγ

πR2
+
γ

R
.

The extensional viscosity is the ratio of σzz and the strain rate ε̇rad = 1.6 (s−1).
The results are plotted in Figure 4.21.

The agreement between finite element and numerical results is good, except
for small values of εrad for which the flow is dominated by shearing. The presence
of a horizontal plateau is related to the fact that the trace ofA reaches a maximal
value. In our calculation, this length is approximately given by trA ≈ Azz ≈
0.8L2. When the trace reaches its maximum value, tension stabilizes, and a
horizontal plateau is observed in the extensional viscosity curve.
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Figure 4.21: Influence of the extensibility L2 of the molecules on the extensional
viscosity as a function of the Hencky strain.
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We can see that the transition from the growing parts of the curves to the
horizontal plateau is steeper for the theoretical than for the finite element cal-
culations. This may be explained by the non-homogeneity of Azz in the section
of the filament. In order to check that assumption, we plot in Figure 4.22 the
Azz profiles for various values of the Hencky strain.
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Figure 4.22: Azz profiles for L2 = 43.255 and various values of εrad.

Close to the free surface, the extension is larger than close to the axis of
symmetry. As a consequence, the trace of A does not reach its maximum value
at the same time for all positions in the cross section, and the transition to the
plateau regime occurs more slowly.

Note that the non-uniformities related to the non-purely extensional char-
acter of the flow are still larger for the zz component of the viscoelastic part of
the Cauchy stress tensor (Figure 4.23).

4.4 Conclusions

We use the finite element method to calculate the deformation of a fluid sample
in a filament stretching rheometer. Calculations have been done with viscoelas-
tic (FENE-CR) and Newtonian models. The strain-hardening behaviour exhib-
ited by viscoelastic fluids is reproduced numerically. This effect leads eventually
to large distortion of elements close to the plates and is a source of numerical
difficulties. Newtonian calculations do not lead to similar numerical problems.

In our calculations, we show that, when a viscoelastic model is used, a con-
sequence of strain-hardening is that the sample nearly is cylindrical. Thus a
nearly purely uniaxial extensional flow is obtained. This type of flow cannot be
obtained with a Newtonian model because the extensional viscosity is too small.
The conclusion is that the rheometer of Sridhar performs well with fluids ex-
hibiting a high extensional viscosity. We show that for such fluids, the influence
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Figure 4.23: TV zz profiles for L2 = 43.255 and various values of εrad.

of gravity, surface tension and inertia may be neglected.
However, we also show that, even for large extensional viscosity fluids, the

stretch rate is neither constant in time, nor in the axial and radial directions.
Therefore the results must be interpreted with care. We propose an improved
estimate of the extensional viscosity based on the observation of the radius
rather than the distance between the plates. Comparisons of both estimate
show that better results are obtained for small values of the Hencky strain. For
larger values of extension, the estimates give similar results.

The influence of material parameters and of the initial gap between the
plates has been investigated, and comparisons have been done with experimental
data. Qualitative agreement is obtained between numerical calculations and
experimental observations.

Note that most calculations have been done with parameters based on shear
data. A better agreement between experimental observations and numerical
results could be obtained with parameters selected to fit both shear and exten-
sional measurements. Nevertheless, it is not possible to reproduce quantitatively
the behaviour of real fluids, with a single mode FENE-CR model.



Chapter 5

Molecular effects in

extensional flows

In this chapter we study the influence of the macromolecular structure on the
behaviour of polymeric solutions in extensional flows.

We propose a personal and intuitive interpretation of the macromolecular
structure in which molecules are considered as “fractal” objects. We assume
that to the self-similarity of the structures identified when one looks closer into
the molecules corresponds a distribution of characteristic length scales. Then,
the fractal structure of molecules allows us to propose a modified version of the
FENE-PM model of Wedgewood et al. [WOB91]. Our model is characterized
by a distribution of extensibilities rather than a distribution of relaxation times.
Our new model is called “multimode FENE-P model”.

By numerical integration of the constitutive equations of our multimode mo-
del, we calculate its behaviour in elongation-relaxation flows. The results of our
numerical calculations are compared to experimental observations. In partic-
ular we give a new interpretation of the “viscous stress” identified by Orr and
Sridhar [OS96]. We also explain how our model may reproduce the hysteretic
behaviours observed by Doyle et al. [DS97, DSMS97].

A comparison is done between our multimode FENE-P model and the FENE
model. It appears that both models have a similar behaviour in extensional
flows. The similarities between the models are related to their “dispersive” char-
acter. It appears that the dispersity in polymer solutions is one of their funda-
mental aspects, and that it should be taken into account for the development of
new constitutive equations. The qualitative agreement between FENE and mul-
timode FENE-P models in extensional flows may be used to select a distribution
of extensibilities of the multimode model such that a good quantitative agree-
ment is obtained. On the other hand, the fact that the hysteretic behaviour of
polymer solutions in elongation-relaxation experiments is related to dispersity
has led us to identify a similar hysteresis in our macroscopic calculations of the
filament stretching device.

173
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The results presented in this chapter are a part of a work done in collabo-
ration with two other researchers (Gregory Lielens and Ingrid Jaumain). This
collaboration will lead to a publication [SLJ+98].

5.1 Multimode approach

5.1.1 Fractal structure of polymer macromolecules

We draw in Figure 5.1 the representation of a polymeric macromolecule. The
molecule is represented with a large number of spherical beads connected either
by rigid rods or by springs.

Last bead

First bead

Figure 5.1: Schematic representation of a polymer macromolecule.

The FENE-dumbbel type models (i.e. FENE-dumbbel, FENE-P and FENE-
CR) are supposed to represent each macromolecule with a single dumbbel com-
posed of two beads connected by a nonlinear spring (section 1.2.4). To make
such a simplification is equivalent to concentrate all hydrodynamic interactions
on the first and last beads, and assume that the intramolecular interactions
may be represented by a spring, the connecting force of which depends on the
distance between both ends of the molecule.

With such a simplification, the dynamics of the macromolecules related to
intramolecular interactions is lost. For example, only one extensibility of the
molecules appears in those models. Intuitively, this extensibility may be thought
of as the maximum separability of the two beads divided by their mean distance
at rest.

Intuition may help us to better understand the consequences of the macro-
molecular structure. In our opinion, the macromolecules have a “fractal struc-
ture”: by looking closer into the molecule with a microscope, self-similar struc-
tures could be observed (Figure 5.2). This is a personal intuitive representation
of macromolecules, but this fractal representation catches certainly a part of
the reality. The fractal structure of macromolecules in polymer solutions should
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3

1 2

Figure 5.2: Illustration of the “fractal structure” of a polymer macromolecule.

be taken into account in the development of constitutive equations. One of the
first constitutive equation based on a “chain” approach is the FENE-PM model.

5.1.2 FENE-PM model

The simplest bead-spring chain model is the Rouse model [Rou53] in which N
identical spherical beads are connected by N − 1 springs (Figure 5.3). In the
original model, the springs connecting two consecutive beads were Hookean, but
they may be replaced by FENE springs. However the viscometric properties of
the resulting model cannot be studied analytically [BCAH87].

i− 2

ri

Spring

i− 1

Bead

i

i+ 1

i+ 2

Figure 5.3: The Rouse beads and springs model for a polymer macromolecule.

For FENE-P springs connectors, the connecting force F c
j of each spring is
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given by

F c
j =

HQj

1− 〈(Qj/Q0)2〉
,

in which Qj is the vector connecting two consecutive beads, H is the stiffness
of the spring, Qj is the length of vector Qj and Q0 is an equilibrium length
for the springs. Solutions may be calculated numerically with this model, but
the computational cost of the calculations increases rapidly and the problem
becomes difficult for a number of beads larger than 25.

In order to find a closure to the model, some approximations have to be
introduced. Wedgewood et al. introduce a modification in the force of the
spring connecting two beads [WOB91]:

F c
j =

HQj

1−
N−1
∑

k=1

〈

(Qk/Q0)
2
〉

(N − 1)

.

They derive a constitutive equation involving a large number of independent
FENE-P modes of different relaxation times. This model is called “FENE-PM”
where the “M” stands for the mean value that appears in the denominator. But
they have only one extensibility parameter L2 for all modes. This is a result of
the pre-averaging step.

5.1.3 A “heuristic” multimode model

Let us have a look to the first circle in Figure 5.2. With the FENE model,
interactions with the solvent concentrate in the first and last beads of the poly-
meric chain, and the whole chain is represented by a single dumbbell. Let us
call this dumbbell “dumbbell 1” (“1” because we are looking to the first circle of
the figure).

Now, if we look closer into the molecule (circle 2), we also may represent the
small piece of chain on which we make a zoom by an elastic dumbbell. Actually,
this elastic dumbbell is member of a Rouse chain of the type presented in Figure
5.3. It is interesting to remark that the extensibity of dumbbell “2” is certainly
smaller than that of dumbbel “1”.

The same operation may be performed on circle 3 of Figure 5.2. Here again,
we identify smaller extensibility springs. Thus we have found various kinds
of springs, each one being characterized by its extensibility, and we have the
relation

L3 < L2 < L1.

Thus, it clearly appears that a correct modelling of the interaction of interme-
diate beads with the solvent leads to the identification of various extensibilities.

We propose here a “heuristic” constitutive equation without trying to derive
it from the Rouse chain model. Our model is essentially inspired from the model
of Wedgewood et al. in the sense that to each mode corresponds a FENE-P
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equation. Its most important feature is that each mode is characterized by its
extensibility Li

2 rather than by its relaxation time.
For a N modes model, the equations governing the evolution of the ith

configuration tensor Ai are those of the FENE-P model and may be written

dAi

dt
− κ ·Ai −Ai · κ† = δ − Ai

1− trAi/L2i
, (5.1)

in which κ is the rate of deformation tensor. The Kramers’ expression of the
contribution of this mode to the polymer stress τ becomes

τ i = ηV
Ai

1− trAi/L2i
− δ. (5.2)

Finally, the total polymer stress is given by

τ =

N
∑

i=1

weiηV

(

Ai

1− trAi/L2i
− δ

)

, (5.3)

in which wei weights the contribution of the ith mode. The sum of all weights
∑N

i=1 wei is equal to 1.
In our model, we neglect the interaction between the modes (the same ap-

proximation has been done for the FENE-PM model). We discuss in section
5.4.3 the problem of the selection of the distribution of extensibilities. The
selection of a discrete distribution has been done for the sake of facility, but ac-
tually, a model involving a continuous distribution is probably more acceptable
from the physical point of view.

For most calculations, two different kinds of distributions are used for the
extensibilities: the “geometric” and the “linear” distributions. All modes are
assumed to have the same relaxation time (λi = λ) and an identical weight for
their contribution to the extra-stress tensor (wei = 1/N).

For a geometric distribution, the extensibilities are distributed according to
a geometric progression. The maximum and minimum values of the extensibility
are noted L2max and L2min. The L

2
i parameters are given by

L2i =
(

L2min
)
N−1

i−1
(

L2max
)
i−1

N−1 .

In a linear distribution, the extensibilities are distributed linearly between the
maximum and the minimum:

L2i =
(N − i)L2min + (i− 1)L2max

N − 1
.

With both distributions, the parameters characterizing the model are the vis-
cosity ηV , the relaxation time λ, the maximum and minimum extensibilities
L2max and L2min, and the number of modes N . To those parameters, we add a
Newtonian viscosity ηN corresponding to the solvent.
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5.2 Identification of a viscous stress

Some experimental results suggest the existence of a viscous component in the
polymeric stress. This observation has led some people to propose modified
versions of the FENE-type models to fit experimental curves. In this section,
after presenting experimental results, we try to demonstrate that experimental
observations may be reproduced simply with our modified multimode FENE-P
model.

5.2.1 Experiments of Orr and Sridhar

Orr and Sridhar use a filament stretching device to measure the stress relaxation
in a filament previously submitted to a large stretching [OS96].

During the first part of their experiment, the fluid sample is submitted to an
elongation at constant stretch rate ε̇ (s−1). Then the upper plate is suddenly
stopped. The time necessary to stop the upper plate is approximately 50 ms,
and depends on the velocity of the plate prior to stopping. They observe that
rapid changes imposed on the force transducer during the deceleration process
cause the initial stress relaxation data to oscillate (Figure 5.4). The oscillations
are probably also related to elastic vibrations of the filament.

To eliminate those spurious oscillations, the relaxation data are fitted with
the sum of two exponentials. With this interpolation function, Orr and Sridhar
try to extrapolate the stress back to the time at which the upperplate came
to a halt. They interpret the obtained value as the elastic stress at stopping
time. The viscous stress is the difference between the total stress at the end of
the stretching, and the elastic stress. (More details about the determination of
viscous and elastic stresses are given in Figure 5.4.)

In their experimental study of the stress relaxation in a filament, Orr and
Sridhar observe a sudden decrease of stress in the filament after cessation of
stretching. The sudden decrease of the stress is interpreted by Orr and Sridhar
as the vanishing of a viscous component.

5.2.2 Relaxation with the multimode FENE-P model

In this section, we show that the observed rapid drop of the tensile stress after
cessation of stretching may be explained by the rapid decrease of the elastic
stress when a nonlinear model is used. By using a multimode FENE-P model
with a wide spectrum of extensibilities, we ensure that some of the modes go
very fast into the nonlinear domain, even for small values of the Hencky strain.
This ensures that the rapid decrease of tensile stress is obtained even for small
values of the Hencky strain.

We simulate the experiments of Orr and Sridhar. For the calculations, we
use the multimode FENE-P model. We distinguish three different fluids labelled
“A”, “B” and “C”. The parameters correponding to the fluids are summarized
in Table 5.1. With such a choice of parameters, we try to approximately re-
produce the fluids “A” and “B” used by Orr and Sridhar in their experiments
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Figure 5.4: Example of result obtained by Orr and Sridhar for their “extension-
relaxation” experiment (from [OS96]). The strain rate is 4 s−1. Orr and Sridhar
also explain how elastic and viscous stress are determined.
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[OS94, OS96]. For fluids “A” and “B”, we choose a geometric distribution of
extensibilities. Fluid “C” is identical to “B” except that the distribution of ex-
tensibilities is linear.

Table 5.1: Material parameters for the various fluids used in our numerical
calculations.

fluid type N L2min L2max λ (s) ηV (Pa.s) ηN (Pa.s)

A geometric 20 3.5 20000 1.15 14 20
B geometric 20 3.5 20000 1.60 25 30
C linear 20 3.5 20000 1.60 25 30

We integrate equations (5.1) as function of time with a fifth order Runge-
Kutta algorithm for a purely extensional flow. The applied strain rate is a
function of time. It is given by

ε̇(t) =















ε̇up, for t ≤ tstop,

ε̇up
tstop +∆tstop − t

∆tstop
, for tstop ≤ t ≤ tstop +∆tstop,

0, for tstop +∆tstop ≤ t,
(5.4)

in which ε̇up is the stretch rate during the stretching, tstop is the time at which
the upper plate is stopped, and ∆tstop is the time necessary to come to rest.

The viscoelastic part of the tension is calculated with (5.3). To this vis-
coelastic tension, we add a purely viscous contribution corresponding to the
solvent. The tensile stress is thus given by

σzz = τ zz − τ rr + 3ηN ε̇(t).

We make four different relaxation experiments at different stopping times.
We select ∆tstop = 0.05 s, and we calculate the relaxation until tend = 2 s. The
calculations have been done with fluid “A”, and the results are plotted in Figure
5.5.

Note that the transition of the growing curve towards the horizontal plateau
is very abrupt and very different than what is observed in the experimental curve
in Figure 5.4. This may be avoided by selecting an appropriate extensibility
distribution. But here, we do not try to reproduce exactly the experimental
results of Orr and Sridhar.

Now, let us look at the relaxation curve corresponding to tstop = 1.2350 s. At
the beginning of the relaxation, the curve decreases very fast, then the relaxation
rate progressively decreases. This is related to the fact that, at stopping time,
a large number of modes have reached a nonlinear extension. The slow down of
the relaxation after some time is related to the progressive return of the modes
in the linear domain.

Note that a fast relaxation after cessation of stretching also may be obtained
with the FENE-P model. But, as explained by Orr and Sridhar [OS96], this
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Figure 5.5: Tension in the filament versus the time for strain-relaxation exper-
iment. The calculations have been done with fluid “A” (see table 5.1 for the
material parameters). The relaxation curves are plotted for four different values
of time corresponding to tstop = 0.7075 s, tstop = 0.8875 s, tstop = 0.9575 s and
tstop = 1.2350 s. ∆tstop = 0.05 s.

behaviour may only be observed close to the horizontal plateau of the extension
curves. For smaller values of extension, the FENE-P model is very similar to
the Oldroyd-B model. Thus we need a distribution of extensibilities to explain
the fast relaxation rate after stopping the extension at small values of time.

The tension calculated with the multimode FENE-P model decreases faster
than the interpolation dotted lines of Orr and Sridhar (Figure 5.4). The experi-
mental device of Orr and Sridhar cannot detect such a rapid drop of the tensile
force. This means that the elastic response of the small extensibility modes
explains easily what Orr and Sridhar interpret as an instantaneous drop of the
tensile force (and thus a viscous stress).

To illustrate this, we plot in Figure 5.6 a zoom on the upper relaxation curve
of Figure 5.4. To this zoom, we add a curve similar to the relaxation curves
obtained with our multimode model and referred to as “elastic fit” (though this
fit only is an intuitive interpolation). The difference between our “elastic fit”
and the fit of Orr and Sridhar appears clearly.

5.2.3 Fit of a relaxation curve

In order to compare quantitatively our relaxation curves with the results of
Orr and Sridhar, we try to reproduce the fit procedure of Orr and Sridhar.
We consider the calculated relaxation curve corresponding to tstop = 1.2350 s
as an experimental result. Then we try to fit this curve with the sum of two



182 CHAPTER 5. MOLECULAR EFFECTS IN EXTENSIONAL FLOWS

Orr and Sridhar fit

Elastic fit

Figure 5.6: Comparison of the fit of Orr and Sridhar with our intuitive “elastic
fit”.

exponential functions (as has been done by Orr and Sridhar):

f(t) = A exp(−t/a) +B exp(−t/b).

(Details about the fit procedure are given in section D.1.) The solution of the
fit is given in Figure 5.7.

The correspondence between the fit curve and the data points is very good.
A “pseudo viscous” component of the tensile stress may be identified on the
curve and it corresponds to the relaxation during the stopping of the upper
plate. However, there is a major difference between our fit and the fit of Orr
and Sridhar: our fit follows the data points after tstop +∆tstop, while the fit of
Orr and Sridhar departs from the data points in that area and leads to larger
estimates of the viscous polymer stress (Figure 5.4).

This may be related to the large oscillations observed in the measured relax-
ation curves. In order to check that assumption, we calculate the same fit with
modified data points: the second data point is put to 10000 Pa. By making
such a modification, we try to reproduce the noise in the tensile stress measured
with the filament stretching device. The results of our fit are given in Figure
5.8.

We see that the fit function is very sensitive to errors measurements. The
comparison of Figures 5.7 and 5.8 leads to one conclusion: the fit done by
Orr and Sridhar is very bad, because of the noise in the measure of the force.
For a perfect measure, the fit function would probably remain close to the
experimental points.

Because of the sensitivity of the fit to the noise, the “pseudo-viscous” compo-
nent of the tensile stress estimated by Orr and Sridhar is larger than what they
would calculate if their fit was good. Moreover, the residual viscous component
they would obtain with a perfect experimental device easily could be explained
by the elastic relaxation during the slow down of the upper plate.

We try to check in section D.2 whether the bad fit of Orr and Sridhar is
sufficient to explain the presence of a viscous component in the polymer stress.
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Figure 5.7: Fit of the relaxation curve corresponding to tstop = 1.2350 s. The
time necessary to come to a halt is ∆tstop = 0.05 s. The fit is done between
tstop + ∆tstop and tend = 2 s. The diamonds and crosses represent the dat-
apoints during the stopping of the plate and the subsequent relaxation respec-
tively; the continuous line represents the fit function f ; the dashed and dotted
lines correspond to the two exponentials.
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Figure 5.8: Fit of the relaxation curve corresponding to tstop = 1.2350 s. The
time necessary to come to a halt is ∆tstop = 0.05 s. The fit is done between
tstop +∆tstop and tend = 2 s. (fluid “A”). The diamonds and crosses represent
the datapoints during the stopping of the plate and the subsequent relaxation
respectively; the continuous line represent the fit function f ; the dashed and
dotted lines correspond to the two exponentials. The second data point has been
put to 104 Pa.
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This is done by predicting a viscous stress with a linear back reinterpolation
from a relaxation curve. The results confirm that the bad fit of Orr and Sridhar
explains their viscous stress observations.

5.3 Birefringence experiment

Doyle et al. [DS97, DSMS97] measure the birefringence during the strain and
relaxation experiment in the filament stretching device. By plotting the tensile
stress versus the birefringence, they find an hysteresis.

5.3.1 Birefringence with the multimode model

The birefringence is related to the elongation of the macromolecules in the sol-
vent. For the FENE-P model, the elongation of the macromolecules is related to
the trace of tensor A. For the multimode FENE-P model, we dont know exactly
how the birefringence must be related to the various configuration tensors.

Therefore, we plot in Figure 5.9, the zz component of the Cauchy stress
tensor versus the trace of the configuration tensor of the largest extensibility
mode (noted trAmax). The resulting hysteresis curves are plotted for four
different values of the stretch rate ε̇. The maximum Hencky strain for the
calculations is ε = 10. The size of the hysteresis increases with the strain rate.
All relaxation curves follow a master curve.
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Figure 5.9: Hysteresis of the zz component of the Cauchy stress tensor as a
function of the trace of the configuration tensor of the last mode. The curves
have been plotted for ε̇1 = 1.0 s−1, ε̇2 = 2.0 s−1, ε̇3 = 3.0 s−1 and ε̇4 = 4.0 s−1.
Fluid “B” is used for the calculation.

The stress may also be plotted as a function of a mean value of the trace of
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the configuration tensors of all modes. We calculate the mean value tr < A >
with

tr < A >=

N
∑

i=1

weitrAi.

The results corresponding to that mean value are presented in Figure 5.10. Note
that the hysteresis obtained when plotting the stress as a function of the largest
extensibility mode is larger than when we use the mean value tr < A >.
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Figure 5.10: Hysteresis of the zz component of the Cauchy stress tensor as a
function of the mean value of the trace of the configuration tensors of all modes.
The curves have been plotted for ε̇1 = 1.0 s−1, ε̇2 = 2.0 s−1, ε̇3 = 3.0 s−1 and
ε̇4 = 4.0 s−1. Fluid “B” is used for the calculation.

A similar picture is plotted in Figure 5.11 for the “linear” version of the
multimode model (fluid “C”). With that fluid, the hysteresis is a little smaller
than in Figure 5.9, but the results are qualitatively comparable.

It is interesting to remark that the shape of our hysteresis curves is qualita-
tively similar to what has been observed by Doyle et al., though the extensibility
distributions have only been guessed.

5.3.2 Birefringence in the filament stretching device

We have seen in section 4.3 that for the filament stretching device, the end effects
result in larger extension of the macromolecules close to the free surface. For
the numerical calculations we used the FENE-CR model, in which the molecules
have a maximum extensibility. As a consequence, the molecules located close to
the free surface reach a maximum extension before the molecules located close
to the axis of symmetry.
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Figure 5.11: Hysteresis of the zz component of the Cauchy stress tensor as a
function of the trace of the configuration tensor of the last mode. The curves
have been plotted for ε̇1 = 1.0 s−1, ε̇2 = 2.0 s−1, ε̇3 = 3.0 s−1 and ε̇4 = 4.0 s−1.
Fluide “C” is used for the calculation.

The non-uniformities of A in the section of the filament may result in an
hysteresis effect in the curves of the mean value of the tension versus the bire-
fringence. We calculate a mean value < τ zz >S across the section with

< τ zz(t) >S=
1

πR2(t)

∫ R(t)

0

τ zz(r, t)2πrdr.

The factor 2πr has been introduced in the integral to take into account the
axisymmetry of the problem. To calculate the mean values of the components
of A, we use

< Aij(t) >D=
1

R(t)

∫ R(t)

0

Aij(r, t)dr.

Here, the factor 2πr is not present in the integral for we try to simulate an
optical measure with a laser ray crossing the filament. We plot in Figure 5.12
the mean value < τ zz >S versus the mean value of the trace of A, and for
three different values of the strain rate ε̇rad. It clearly can be seen that during
the stress relaxation, to a small decrease of tr < A >D corresponds a larger
decrease of < τ zz >S than during the stretching. This comes from the fact that
during the relaxation, all molecules relax together while during the stretching,
the molecules located close to the free surface reach their maximum length before
the other molecules.

Note that the contribution of the end effects to the hysteretic behaviour is
too small to explain experimental observations of hysteresis curves.
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Figure 5.12: Hysteresis curves calculated with the filament stretching device for
three different values of the strain rate.

5.4 Comparison of multimode and FENE

5.4.1 Differences between the models

The shape of the hysteresis curves obtained with the multimode FENE-P model
is surprisingly similar to the shape of hysteresis curves obtained with the FENE
model [LHJ+97]. But, at first sight, the mechanisms by which the hysteretic
behaviour appears are different with both models:

• With the FENE model, the hysteretic behaviour is related to the fact that
the elastic dumbbells are already dispersed in length and orientation be-
fore the beginning of stretching. When submitted to an extensional flow,
the dumbbells elongate according to their initial length in the direction
of stretching, until the nonlinear force in the spring compensates hydro-
dynamic forces. When this saturation of extension occurs, the function
representing the distribution of dumbbels gathers progressively into a nar-
row peak corresponding to the saturation length. During relaxation the
dumbbells of the peak relax approximately at the same rate. Actually,
Brownian forces widen progressively the narrow peak, but this effect is
small compared to the relaxation due to connector forces [LHJ+97].

• Let us first remark that for the multimode model, the trace of the configu-
ration tensor of one mode may be interpreted as the average square length
of this mode. With the multimode model, all modes start from the same
position (the configuration tensors Ai have all the same value δ before
stretching). At the beginning of stretching, they all elongate the same
way. But very soon, the small extensibility modes are abandonned along
the way, while the larger extensibility modes continue to elongate. When
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the stress curve reaches the horizontal plateau, each mode has reached its
saturation length. During relaxation, all modes relax approximately at the
same rate but they start from various positions. Thus they are dispersed
during relaxation.

Thus, for the FENE model, the hysteretic behaviour is related to the fact that
the dumbbells are dispersed during stretching and gathered during relaxation,
while with the multimode model, the modes are gathered during extension and
relax separately. In both cases, the hysteretic behaviour is related to the fact
that all modes (or dumbbells) do not reach a maximum extension at the same
time.

5.4.2 New representation of the multimode model

In one sense, each FENE-P mode behaves like a single dumbbell: it is elongated
during extension, reaches a maximum length, and then relaxes after cessation
of the stretching. It is interesting to remark that to a dumbbell of small initial
length corresponds a large extensibility FENE-P mode. Indeed, the last modes
that reach a maximum length are those of largest extensibility, while the last
dumbbells that reach their maximum length are those that have initially the
smallest length in the axial direction.

This suggests us an alternative way to represent the multimode model during
stretching. By dividing the configuration tensor of each mode by its maximum
extensibility L2i , we obtain a new representation of the multimode model. For
convenience, we introduce a new notation for the configuration tensor:

ai =
Ai

L2i
. (5.5)

With this new representation, we can see that the similarities between the FENE
and FENE-P multimode models are stronger than it appeared at first sight:

• Before stretching, the various modes of the new version of the multimode
model are dispersed in length. Those initial lengths correspond to the
traces of the tensors ai; their lengths are thus given by 3/L2i .

• At the end of the stretching, in the horizontal plateau of the stress curve
as a function of time, all modes have approximately the same extension
and the traces of all tensors ai are a little smaller than 1.

5.4.3 Selection of an extensibility distribution

Taking into account that the new representation of the multimode model ex-
hibits many qualitative similarities with the FENE model, we could ask the
question: “is it possible to have a quantitative agreement between the two mod-
els?”

This question has been investigated in [SLJ+98]. It is shown that, with an
appropriate change of variables, it is possible to rewrite the equations governing
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the motion of FENE dumbbells in such a way that they become very similar to
the governing equations of the FENE-P mode in the new representation. The
governing equations differ essentially by the presence of a Wiener process in the
FENE model.

But, in extensional flows, the rheological behaviour of FENE model depends
essentially on the initial distribution of dumbbells [LHJ+97, LKLon]. In the new
representation of the multimode model, the initial length distribution (trace of
a) of the various modes closely is associated with their distribution in the old
representation. This property is used to select a distribution of extensibilities
on the basis of the equilibrium distribution of dumbbells at rest.
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Figure 5.13: One-dimensional startup of elongation followed by relaxation: com-
parison between FENE (solid curve), FENE-P (dashed curve) and multimode
(dash-dotted curve) results (from [SLJ+98]).

With this new distribution, a very good agreement may be obtained between
the FENE and multimode models in uniaxial elongational flows. To illustrate
this, we plot in Figure 5.13 a comparison of the stresses obtained with three
models in a startup of elongation followed by relaxation. The specified velocity
gradient is

κ(t) = 2(H0(t)−H9/2(t)). (5.6)

Figure 5.13 shows that the early multimode stress and mean square extension
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growths remain very close to their FENE counterparts. However, the more
pronounced peak-distribution of the multimode model leads at later times to a
slight overprediction of both extension and stress values.

Unfortunately the procedure of selection of an extensibility distribution de-
pends on the type of flow: for example a distribution selected for a uniaxial
elongational flow gives very disappointing results for biaxial elongational flows.
But it is possible to select another distribution of extensibilities that gives very
good results for biaxial elongational flows. Thus, we cannot consider the multi-
mode model as a closure approximation of the FENE model.

5.5 Conclusions

We have shown in this chapter, that some essential characteristics of the polymer
solutions in elongational flows may be reproduced by the use of a multimode
FENE-P model with a spectrum of extensibilities. One of the results we have
been able to reproduce is the hysteretic behaviour of solutions in elongation-
relaxation experiments. Another important experimental phenomenon is the
initial fast decrease of the stress as a function of time after cessation of stretching.

Actually, those two experimental phenomena may be reproduced either with
the multimode FENE-P model, or with the FENE model. Moreover a quan-
titative agreement between both models may be obtained by selection of an
appropriate extensibility distribution.

In the multimode stress relaxation curves presented in Figure 5.5, the abrupt
transition towards the horizontal plateau may be explained by the fact that
the extensibility distribution is not appropriate. With the FENE model, it
is possible to obtain a better qualitative agreement between calculations and
experimental observations only by adpating the values of relaxation time and
extensibility of the model. Thus it is also possible to select a more appropriate
extensibility distribution for the multimode model.

It is interesting to remark that a good fit of stress relaxation curves pre-
sented in Figure 5.4 with a linear model would require a very large number of
modes with various relaxation times, while a good qualitative agreement may
be obtained with the FENE model by modifying only two parameters. Thus
the combination of dispersity and nonlinearity could explain many rheometrical
results without needing a distribution of relaxation times.

Note that, the multimode FENE-P and FENE models are based on two
totally different representations of the macromolecules in polymeric solutions.
Starting from the fractal interpretation of the macromolecules, we expect to
find modes with small extensibilities compared to that of the FENE dumbbells.
Moreover, it has been demonstrated in [SLJ+98] that the extensibility distribu-
tion of the multimode model corresponding to the FENE distribution of dumb-
bells leads to modes that have small extensibility. If we combine the two ideas,
we conclude that, to correctly represent the behaviour of polymer solutions in
elongational flows with a multimode model, some very small extensibilities must
be introduced in the distribution of the multimode model.
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Those very small extensibility modes only influence the rheological behaviour
of the model for small values of the Hencky strain. For such values of the stretch-
ing, the contribution of those modes to the total stress is not negligible compared
to the contribution of the larger extensibility modes because of the nonlinear
character of the model. Moreover, the contribution of small extensibility modes
to the nonlinearity of the model is predominant at small values of Hencky strain.

It is interesting to remark that Bruno Purnode was obliged to use very small
values of the FENE-P extensibility parameter L2 to reproduce with numeri-
cal calculations the flow patterns experimentally observed in 4:1 contractions
[PCa, PCb]. This may be explained as follows: the flow patterns are strongly
influenced by the nonlinearity of the fluid behaviour. If we consider the multi-
mode model, the modes of small extensibility have the largest contribution to
the nonlinearities. To calculate the flow with FENE-P model is equivalent to use
the multimode model with only one mode. In order to reproduce the nonlinear
behaviour of macromolecules, the extensibility parameter must be very small.

From the behaviour of multimode model, we predict that, when we try to
calculate contraction flows with a single mode FENE-P model, the parameter L2

must depend on the contraction ratio. This dependence of material parameters
on the type of flow one wants to calculate may be avoided if a “dispersive”model
is used instead of FENE-P. For example, the FENE model with an appropriate
selection of parameters could reproduce the observed flow patterns for a wide
range of flow rates and contraction ratios. Macroscopic models may also be used
provided they are obtained with a closure that takes the dispersive character of
polymer solutions into account. For example, it would be interesting to calculate
contraction flows with the FENE-L model [LHJ+97, LKLon].
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Conclusions

This part is devoted to the study of viscoelastic extensional flows.
In chapter 4, we study numerically a filament stretching rheometer. This

study allows us to derive the conditions under which the device provides good
results. In particular, we show that the filament stretching device only should
be used with fluids exhibiting strain hardening. For Newtonian fluids, the de-
vice always produces poorly extensional flows, and the measure of the force in
the filament is difficult to interpret because it is mainly related to gravitational
effects. We show why the flow produced in the device departs from a purely uni-
axial extensional flow, and we propose an improved estimate of the extensional
viscosity.

Here, it is interesting to remark that two approaches may lead to improve-
ment of rheometrical measurements. We may build more sophisticated devices
in which the flows become closer to the rheometrical flows. This approach,
though interesting, also leads to a dramatic increase of the complexity of ex-
perimental devices, and to a still more dramatic increase of their cost! Another
possible approach is to use a relatively simple device in which the rheometri-
cal flow only is approximated. Then a numerical study of the device may help
the experimentalist to identify the complex flow, and to interpret the measured
data. Taking the dramatic reduction of computational costs into account, this
second approach is more promising than the first one.

Finally, we have presented in chapter 5 the results of an intuitive investiga-
tion of the influence of the fractal structure of macromolecules on the rheolog-
ical properties of polymer solutions. Those results confirm that the dispersity
of conformation of the molecules may have a large influence on the rheological
properties of polymer solutions (and probably polymer melts too). In particular,
we have shown that the rapid drop of tensile stress after cessation of stretching,
and the hysteresis observed in birefringence experiments may be explained by
dispersity and nonlinearity.

It is possible to build closure approximations that take the dispersity into
account. This has been done, for example, for the FENE model [LHJ+97].
But this gives rise to very complicated models, and much has still to be done
to find constitutive equations adapted to a wide range of flows. When such
constitutive equations are developed, the mathematical developments are often
so complicated, that simplifications must be done in the calculations. But the
physical meaning of those simplifications is not always easy to understand. For
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example, the modification in the connector force introduced by Wedgewood et
al. allows them to close the equations governing the Rouse chain model. But
by introducing the simplification, they loose some important characteristics of
the chain model, and many experimental observations cannot be reproduced
with the FENE-PM model. As a comparison, an intuitive and pragmatic ap-
proach, though not based on complicated mathematical developments, has led
to the multimode FENE-P model that is able to reproduce many observations
in elongation-relaxation experiments.

Therefore, we think that a more pragmatic approach should be used in the
development of constitutive equations. And when a simplification is introduced
in the mathematical developments, the physical interpretation of that simplifi-
cation should always be clearly understood. Otherwise, constitutive equations
based on physical intuition and experimental observations will generally better
reproduce real fluids.
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Appendix A

Numerical methods in

Polyflow

We present in this appendix some details about the way some numerical tech-
niques presented in chapter 1 are implemented in Polyflow.

A.1 Constraints in Polyflow

Various ways may lead to the imposition of contraints to a set of equations.
The introduction of Lagrange multipliers allows to add a condition to the weak
formulation of the equations. For example, in the Navier-Stokes equations, the
pressure field is the Lagrange multiplier of the incompressibility condition. By
modifying the interpolation of the multiplier, the condition may be imposed
more or less strongly. In some cases, the Lagrange multiplier method may be
used to impose essential boundary conditions (see section 3.3.5). Note that
the multiplier may be an interesting result (for example the pressure in Navier-
Stokes equations). The method of Lagrange multiplier leads to an increase of
the number of equations and unknowns.

There is another way to impose constraints without increasing the number
of unknowns of the problem. Let us see for example how the constraint

zn = β + αz1

may be added to the linear system

n
∑

j=1

Aijzj − bi = 0, i = 1 . . . n.

If this set of equations is the result of the discretization of an elliptic operator,
to solve the equations is equivalent to calculate the solution

∑

zjφj in a finite
dimension subspace, that minimizes a functional J . When the constraint zn =
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β + αz1 is imposed on the system, the dimension of the subspace of possible
solutions is reduced. In his PHD thesis [Leg92], Vincent Legat explains how the
variables of the algebraic linear system may be constrained in such a way that
the size of the system is also reduced before the frontal resolution. He justifies
the various operations for the simplified example of a Poisson equation. Here,
we only give the three steps of the proposed procedure:

1. The nth line of of the matrix A is multiplied by α, and added to the first
line. The same operation is done for b: the nth element of b is multiplied
by α and added to the first element. That is the line operation.

2. From the vector b, we substract the nth column ofA mutiplied by β. From
the first column of A, we substract the product of the nth column of A
and α. That is the column operation.

3. The nth line and nth column are cancelled from the system. The n − 1
first variables are calculated by inversion of the matrix. The nth variable,
zn is calculated with the constraint zn = β + αz1.

In the data files of Polyflow, constraints of the general form are implemented
with “CTRRHS” cards. An “ADD” flag of the CTRRHS card allows to add the con-
straint to previous constraints. For example if the old constraint is x = a and we
add the constraint x = b, the new constraint will be x = old constraint + b =
a + b. This capability allows the user to define linear combinations of con-
straints. The constraint may also be imposed to the variation of the field with
the “SUP” flag. If this capability is used, we have x = xold + a instead of x = a.
For constraints of the form zn = β, “BEVAXS” cards are used.

A.2 Resolution of the nonlinear system

The discretization of the governing equations and the selection of a finite ele-
ment representation of the unknown fields provide a set of nonlinear algebraic
equations in the nodal values. In order to solve the nonlinear system, an ap-
propriate iterative scheme is introduced. Polyflow uses two basic schemes: the
Newton-Raphson algorithm, and the Picard method.

The nonlinear system may be written as follows:

r(x) = K(x)x+ f(x) = 0, (A.1)

where K(x) is usually called the “stiffness” matrix. We start from the solution
vector xn−1 to calculate an improved estimate of the solution xn: the system
(A.1) is linearized around the old solution xn−1, and we hope to find xn =
xn−1 + δx. We have

r(xn) = r(xn−1 + δx) ≈ r(xn−1) +∇r(xn−1)δx (A.2)

in which ∇r is the Jacobian matrix. We hope that r(xn) vanishes. So an
increment δx is calculated by solving

∇r(xn−1)δx = −r(xn−1), (A.3)
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and the new estimate of the solution is given by xn = xn−1 + δx.
The Newton-Raphson algorithm is endowed with a quadratic convergence

rate, provided the initial solution is located in the disk of convergence. How-
ever, it is frequent that the disk of convergence is too small. For such cases, a
continuation method has to be used: a parameter related to the nonlinearity
of the problem is progressively increased, and intermediate solutions are calcu-
lated with the Newton-Raphson algorithm, and starting from the last converged
solution.

Note that in Polyflow, the equations are built in a way similar to that of
equation (A.3): the right hand side contains the residue −r(xn−1), and a Ja-
cobian matrix ∇r(xn−1) is derived from the expression of the residue (i.e. the
derivative of the residue is calculated for all the unknowns of the system).

The radius of the disk of convergence of Newton-Raphson algorithm may be
very small, for example when a Newtonian fluid exhibits an important shear
thinning character. The lack of convergence of Newton’s algorithm may be
avoided by using a matrix A different than the Jacobian matrix ∇r in the
iterative scheme. Generally A is obtained by an incomplete derivation of r
with respect to nodal unknowns. For example, when the lack of convergence of
Newton-Raphson algorithm is related to the shear thinning character of a fluid,
viscosity is not derived with respect to nodal values of the velocity field. This
new scheme is called “Picard iterative scheme”. The radius of this scheme is
larger, but it does not enjoy the quadratic convergence property.

A.3 Adaptive time stepping algorithm

We present here the adaptive time-stepping strategy proposed by Gresho, Lee
and Sani [GLS80] and later used by Christine Bodart [BC94, Bod94]. The
principle of the strategy is simple: an explicit scheme is used to predict the
solution at time step n + 1. Then the explicit prediction is corrected with an
implicit scheme. The difference between the predicted and corrected solutions
at time tn+1 is used to calculate the next time step ∆tn+2.

Introducing the notations

żn+1 =M−1(zn+1)g(zn+1), (A.4)

żn =M−1(zn)g(zn), (A.5)

expression (1.37) may be written

zn+1 + θ∆tn+1ż
n+1 = zn − (1− θ)∆tn+1żn. (A.6)

By multiplying this expression by M(zn+1) and introducing the notation zr =
zn − (1− θ)∆tM−1(zn)g(zn), we obtain

1

θ∆tn+1
M(zn+1)

(

zn+1 − zr
)

+ g(zn+1) = 0. (A.7)
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zr only depends on the solution at time step n, and is called the “explicit part”
of the corrector. Equation (A.7) is solved with a Newton-Raphson algorithm
and gives the solution zn+1. Note that equation (A.7) only exists if the method
is implicit (θ > 0).

The initial value zp used to start the Newton-Raphson algorithm is predicted
with an explicit predictor. For example the use of an Euler explicit scheme gives

zp = zn +∆tżn. (A.8)

A second order predictor explicit scheme is the Adams-Bashforth scheme:

z
p
n+1 = zn +

∆tn+1
2

(

2żn +
∆tn+1
∆tn

(żn − żn−1)
)

(A.9)

To calculate the Euler explicit prediction (A.8), the time derivative of z at
time tn must be known a priori. To calculate the second order prediction (A.9),
the two last time derivatives of the solution must be known.

For the current time step, żn+1 may be estimated with equations (A.4) and
(A.7). This gives

żn+1 =
zn+1 − zr
θ∆t

. (A.10)

The local error of time discretization defined as

dn+1 = zn+1 − z(tn+1) (A.11)

is used to calculate the next time step ∆tn+2. Assuming that zn, zn+1, . . . ,
żn, żn+1, . . . are exact, it is possible to determine a local estimate of the time
discretization error by an expansion in Taylor series. With a θ method like
(A.6), the generic form of the discretization error is

zn+1 − z(tn+1) =
(

θ − 1

2

)

∆tn+1
2z̈n +

1

2

(

θ − 1

3

)

∆tn+1
3···z

n
+O

(

∆tn+1
4
)

.

(A.12)
We see that only the Crank-Nicolson scheme (θ = 1/2) if of the second order
(error as ∆t3). A local estimate of the local error of this method is given by

zn+1 − z(tn+1) =
1

12
∆tn+1

3···z
n
+O

(

∆tn+1
4
)

. (A.13)

For the implicit Euler scheme, one has

zn+1 − z(tn+1) =
1

2
∆tn+1

2z̈n +O
(

∆tn+1
3
)

. (A.14)

Similar estimates of the local error may be calculated for the explicit Euler and
Adams-Bashforth predictors. One obtains

zn+1P − z(tn+1) = −
1

2
∆tn+1

2z̈n +O
(

∆tn+1
3
)

(A.15)
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and

zn+1P − z(tn+1) = −
1

12

(

2 + 3
∆tn

∆tn+1

)

∆tn+1
3···z

n
+O

(

∆tn+1
4
)

(A.16)

respectively.
By combining the error expressions of the second order predictor-corrector

(A.13) and (A.16), one obtains the discretization error given by

dn+1 =
zn+1 − zn+1P

3

(

1 +
∆tn

∆tn+1

)+O
(

∆tn+1
4
)

. (A.17)

A similar expression may be calculated for the first order predictor-corrector
scheme:

dn+1 =
zn+1 − zn+1P

2
+O

(

∆tn+1
3
)

. (A.18)

Vector dn+1 may be used to estimate the next time step by imposing that the
error of the time step is equal to a parameter ε. From (A.17), one obtains

∣

∣dn+2
∣

∣

∣

∣dn+1
∣

∣

(

∆tn+2

∆tn+1

)3

∣

∣

∣

∣

···
z
n+1
∣

∣

∣

∣

∣

∣

∣

···
z
n∣
∣

∣

. (A.19)

Noting that
···
z
n+1

=
···
z
n
+ O (∆tn), we may replace

···
z
n+1

in (A.19) by ε. Ne-
glecting higher order terms, one has

∆tn+2 = ∆tn+1

(

ε

dn+1

)1/3

. (A.20)

Thus we have an estimate of the next time step. Actually this operation is done
separately for all fields influencing the transient evolution. The smallest time
step obtained is selected as the new time step. The same method is used for the
first order predictor-corrector scheme. One obtains easily

∆tn+2 = ∆tn+1

(

ε

dn+1

)1/2

. (A.21)

Note that equations (A.20) and (A.21) are not used without additional tests.
For example, one tests the convergence of Newton-Raphson schemes before going
to the next time step. If one SOLVER does not converge, the step is recalculated
with a smaller time step. One also checks that the difference between the new
time step and the current one is not too large. If the difference is too large,
it may mean that the last calculated solution is not very good. Therefore,
additional tests are added to the algorithm. More information about practical
details may be found in [Bod94].
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Appendix B

More information on

multilayer flows

This appendix is devoted to the presentation of additional informations to the
chapter 2. We present in sections B.1.1 and B.1.2 the expressions of the velocity
and pressure fields for the two-layer planar Poiseuille flow, and core-annular
flows respectively (Figures 2.1 and 2.28). In section B.2, we summarize the
various nonlinear phenomena observed in multilayer transient calculations.

B.1 Base flows

B.1.1 Two layer planar Poiseuille flow

The equations are solved in a cartesian coordinates system. The flow is horizon-
tal and parallel to the x axis. The vertical component of the velocity vanishes.
The horizontal component only depends on y, and consists of two parabolic
profiles given respectively by

u1(y) = 1 +
m− n2
n(n+ 1)

y − m+ n

n(n+ 1)
y2,

u2(y) = 1 +
m− n2

mn(n+ 1)
y − m+ n

mn(n+ 1)
y2.

The horizontal pressure gradient is constant on the domain. We find

∂p

∂x
=
∂2u1
∂y2

,

= m
∂2u2
∂y2

,

= −2(m+ n)

n(n+ 1)
. (B.1)

203



204 APPENDIX B. MORE INFORMATION ON MULTILAYER FLOWS

If gravity is neglected, the pressure field is independent of y. Otherwise, a
constant vertical pressure gradient, given in both layers respectively by ∂p/∂y =
−G and ∂p/∂y = −ζG, is to be added to (B.1). The total flow rate in the two
layers is obtained by integration of the velocity profile along a vertical section:

Q̇ =

∫ 0

−n

u2(y)dy +

∫ 1

0

u1(y)dy

=
4mn3 + 3mn2 + n4

6mn(n+ 1)
+

3n2 + 4n+m

6n(n+ 1)
, (B.2)

=
4mn3 + 6mn2 + n4 + 4mn+m2

6mn(n+ 1)
.

B.1.2 Core-annular flow

In each layer, the velocity and the pressure satisfy the Navier-Stokes equations.
For the base flow, we have

dp1
dz

=
dp2
dz

= −f.

The axial component of the velocity is in each layer respectively given by

v1(r) =
f + ρ1g

4µ1

(

R21 − r2
)

+
f + ρ2g

4µ2

(

R22 −R21
)

+
R21[[ρ]]g

2µ2
ln
R2
R1

, (B.3)

v2(r) =
f + ρ2g

4µ2

(

R22 − r2
)

− R21[[ρ]]g

2µ2
ln

r

R2
,

where [[(·)]] = (·)1 − (·)2.
The flow rates are given by integration of the velocity on each layer:

Q1 =

∫ R1

0

2πrv1(r)dr

= πR21

(

f + ρ1g

8µ1
R21 +

f + ρ2g

4µ2

(

R22 −R21
)

+
[[ρ]]gR21
2µ2

ln
R2
R1

)

= π
f + ρ1g

8µ1
R41 + π

f + ρ2g

4µ2

(

R21R
2
2 −R41

)

+ π
[[ρ]]g

4µ2
R41 ln

R22
R21

.

Q2 =

∫ R2

R1

2πrv2(r)dr

= π
f + ρ2g

8µ2

(

R21 −R22
)2

+ π
R21[[ρ]]g

4µ2

(

R21 ln
R21
R22

+R22 −R21
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.
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Q = Q1 +Q2

= π
f + ρ1g

8µ1
R41 + π

f + ρ2g

8µ2
(R42 −R41) + π

[[ρ]]g

4µ2
(R21R

2
2 −R41). (B.4)

B.2 Nonlinear phenomena

Our transient calculations allow us to observe phenomena that cannot be pre-
dicted with a linear theory. The most evident nonlinearity we expect to see in
our transient calculations is the nonlinearity related to the growth of an unstable
perturbation in the nonlinear domain. This point is discussed in section B.2.1.
But other nonlinear phenomena may be observed. For example the frequency
of the oscillations in amplitude curves for n =

√
m depends on the amplitude

of the initial perturbation (see section B.2.3). Moreover, we demonstrate in
section B.2.2 that the the higher order harmonics observed in the perturbation
are originated by nonlinearities of the governing equations.

B.2.1 Large amplitude perturbations

The unstable perturbations grow. At the beginning of their growth, their be-
haviour is essentially linear if their amplitude is sufficiently small. But they
finally reach an amplitude for which their behaviour cannot be described with
a linear theory.

For unstable flows, we may distinguish two different situations: the most
unstable mode may be either of the first harmonic or of a higher order harmonic.

For n = 2.63, the amplitude of the first harmonic of the perturbation in-
creases with time. For large values of t, the amplitude of the perturbation
becomes so large that the interface flattens close to the upper plate, and de-
parts from a sinusoidal shape (figure 2.17). If we want to describe the shape of
the interface with sinusoidal functions, a spectrum of wavelength must be intro-
duced: h(x) = g1 sin(αx + β1) + g2 sin(2αx + β2) + · · · . In the last expansion,
g1 and g2 correspond respectively to the amplitudes A and A2 of the first and
second harmonics. Therefore, we expect the higher order harmonics to grow
with time when the amplitude A of the perturbation becomes large.

In Figure B.1, we plot the amplitude of the three first harmonics as a function
of time. As the amplitude of the perturbation (i.e. of the first harmonic) tends
towards 1, the amplitude of the higher order harmonic curves grow smoothly.

In the curves giving the amplitude of the harmonics as a function of time
for n = 8(figure B.2), we see that only the first harmonic is stable. Several
modes of the second and third harmonics are originated at the beginning of
the calculation. For small values of t, the amplitude of those modes is small,
and they interfere. But, for both second and third harmonics, at least one of
the modes is unstable; during their growths, the most unstable modes of each
harmonic progressively dominates and the oscillations of the related amplitude
curves progressively vanish.
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Figure B.1: Amplitude of the three first harmonics as a function of time (α =
0.4, n = 2.63, m = 20, IR = 10, Ainit = 0.1 and ∆t = 0.25). The continuous,
dashed and dotted lines correspond respectively to the first, second and third
harmonics.
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Figure B.2: Amplitude of the three first harmonics as a function of time (α =
0.4, n = 8, m = 20, IR = 10, Ainit = 0.1 and ∆t = 0.25). The continuous
dashed and dotted lines correspond respectively to the first, second and third
harmonics.
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In Figure B.3 we plot the shape of the interface for two values of t. For
t = 380 and t = 562.5, the flow is dominated by the second and the third
harmonic respectively. But in both cases, modes of other harmonics also are
present in the flow.
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Figure B.3: Configuration of the two layers for t = 380 (a) and t = 562.5 (b).
(α = 0.4, n = 8, m = 20, IR = 10, Ainit = 0.1 and ∆t = 0.25).

For large values of t oscillations appear in the amplitude curve of the first
harmonic. This gives us the impression that an unstable mode of the first
harmonic grows in the flow. When this occurs, the amplitude of the high order
harmonics already is large. We think that the perturbations of the first harmonic
are destabilized by the non linearities of the flow generated by the growth of
higher order harmonics.

B.2.2 Unstable higher order harmonics for n = 8

The fact that for n = 8 the amplitude of the second harmonic oscillates for small
values of t in Figure B.4 proves that various modes of the second harmonic are
present in the flow. But one of the modes grows faster than the others and the
oscillations vanish for larger values of t. It is not surprising that some modes
of the second harmonic are unstable, for the second harmonic corresponds to
a perturbation of wavenumber α = 0.8 for which the linear stability theory
predicts a growth rate αci > 0 (figure 2.7).

We also see that for n = 8 and t <∼ 250, the ratio of the amplitudes A(t)
taken respectively for Ainit = 0.1 and Ainit = 0.05 is approximately equal to
2. But the corresponding ratio for the second harmonic is approximately 4.
(A similar observation has been done for n = 2.63.) We conclude that higher
order harmonics are originated in the flow by the nonlinearities of the governing
equations (i.e. by inertia terms).

B.2.3 The peculiar case n =
√

m

The low frequency oscillations observed in Figures 2.19 and 2.21 only occur for
n =
√
m, value for which all linear stability analyses predict a neutral stability.

For the other values of n, we always obtain high frequency oscillations. The
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peculiar behaviour of the oscillations for n =
√
m is probably related to its

neutral interfacial stability.
Actually, the linear stability analyses also predict a peculiar translation ve-

locity of the perturbations for n =
√
m. For example, the long wavelength

asymptotic analysis of Yiantsios and Higgins [YH88b] predicts a translation
velocity ctr given by

ctr = 1 +
2(m− n2)(m− 1)(n3 + n2)

(n2 + n)(n4 + 4n3m+ 6n2m+ 4nm+m2)
.

For n =
√
m, this equation simply gives ctr = 1. Thus, it seems that for n =

√
m

the perturbations are transported by the flow, at the velocity of the interface,
without increasing or decreasing.

If all modes were translated at the same velocity, oscillations could not be
observed in amplitude curves. Nevertheless, oscillations occur in our curves for
n =
√
m, though at very small frequency. That makes us think that the trans-

lation velocity of the various modes present in the flow is not exactly equal to
one. An explanation of that, may be found in the nonlinearity of the behaviour
of the modes present in the flow.

If we write the translation velocity of the perturbations as a function of the
amplitude, we obtain something like

ctr = clttr(α, n, k) + f(A,α, n, k),

in which αclttr is the translation velocity of the perturbation predicted with the
linear theory, f(A,α, n, k) represents the effect of the nonlinearities on the trans-
lation velocity of the mode (and thus f decraeses with A), and k denotes the
observed mode.

The difference between the translation velocities of two modes is given by

clttr(α, n, k1)− clttr(α, n, k2) + f(A,α, n, k1)− f(A,α, n, k2). (B.5)

For small amplitude modes, the nonlinearities are small and f(A,α, n, k1) −
f(A,α, n, k2) is generally small compared to clttr(α, n, k1)− clttr(α, n, k2). There-
fore, we do not expect the frequency of the amplitude oscillations to be very
different than the frequency we could predict with a linear theory. Moreover, the
frequency will remain approximately independent of the amplitude for moderate
values of A.

But there is one exception to this theory: if clttr(α, n, k1)− clttr(α, n, k2) van-
ishes or becomes very small (and this occurs for n =

√
m), f(A,α, n, k1) −

f(A,α, n, k2) may no longer be neglected. Actually, for n =
√
m, this term will

be responsible of the difference of translation velocity between the modes. Thus,
f(A,α, n, k1) − f(A,α, n, k2) is clearly related to the frequency of the oscilla-
tions. Therefore, we may expect the frequency to decrease with the amplitude
of the perturbation A for n =

√
m.

In order to check this assumption, we plot in Figures B.4 and B.5 the am-
plitude curves for the first and second harmonic, and for two different initial
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values of the perturbation’s amplitude. (To clarify Figure B.5, we do not plot
the curves for n = 2.63. The effect of the initial amplitude on the amplitude
curve for n = 2.63 is qualitatively identical to its effect on the curves for n = 8.)
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Figure B.4: Amplitude of the first harmonic of the perturbation as a function of
time for various values of n and Ainit (α = 0.4, m = 20, IR = 10, n = 2.63, 8
or
√
20, Ainit = 0.1 or 0.05 and ∆t = 0.25).

We observe the expected phenomena: the frequency of the oscillations de-
creases with Ainit for n =

√
m, but remains independent of the initial amplitude

for other values of n.
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Figure B.5: Amplitude of the second harmonic of the perturbation as a function
of time for various values of n and Ainit (α = 0.4, m = 20, IR = 10, n = 8 or√
20, Ainit = 0.1 or 0.05 and ∆t = 0.25).



Appendix C

Contact line problem in

Polyflow

C.1 Line dynamic condition with constraints

C.1.1 Dirichlet boundary conditions and contact force

We have seen in section 1.3.1 how the integration by parts of the weak formula-
tion of the Galerkin equations allows us to identify a natural boundary condition
involving the contact force t = σ ·n. The strong formulation of the momentum
equation may be written

∇ · σ(v, p,T, · · · ) + f = 0.

The weak formulation, after integration by parts simply gives

∫

Γ

ψj · [σ(v, p,T, · · · ) · n]dΓ−
∫

Ω

∇ψj : σ(v, p,T, · · · )dΩ = 0. (C.1)

When Neumann boundary conditions are applied along the boundary, a force
repartition t = σ(v, p,T, · · · ) · n is prescribed, and equation (C.1) becomes

∫

Ω

∇ψj : σ(v, p,T, · · · )dΩ =

∫

Γ

ψj · tdΓ. (C.2)

If Dirichlet conditions are applied, the left hand side of (C.2) is not calculated,
and the discretized equations before the imposition of contraints are given by

∫

Ω

∇ψj : σ(v, p,T, · · · )dΩ = 0. (C.3)

Then, the three steps presented in section A.1 may be used to impose a Dirichlet
condition of the type zn = β.
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Instead of imposing the velocity field with constraints, an appropriate con-
tact force t may be applied along the boundary Γ in order to impose the velocity
on that boundary. In such a formulation, t is a priori unknown; it is the La-
grange multiplier of the constraint on the velocity, and its calculation is coupled
with the resolution of the others governing equations.

In Polyflow, we use a Newton-Raphson algorithm (see section A.2) and ac-
tually, before imposition of the contraints, the left hand sides of the discretized
equations for both methods are

∫

Γ

ψj · tdΓ−
∫

Ω

∇ψj : σ(v, p,T, · · · )dΩ (C.4)

and

−
∫

Ω

∇ψj : σ(v, p,T, · · · )dΩ (C.5)

respectively.
Of course, the imposition of the velocity along the boundary must give ex-

actly the same result with both methods. With the Lagrange multiplier method,
when convergence occurs, the left hand side (C.4) vanishes. Thus, for a con-
verged solution, the left hand side (C.5) must be equal to the integration of the
contact force

−
∫

Γ

ψj · tdΓ. (C.6)

Note that t is the force applied by the boundary on the fluid. Thus (C.5) is
equal to the resultant of the force imposed by the fluid on the boundary.

This property may be used to calculate with a postprocessor the resulting
force on a boundary on which Dirichlet boundary conditions are imposed. (Ac-
tually, this is done in Polyflow with the “DUAL” cards.)

C.1.2 Contact forces and constraints

The properties of the converged left hand side (C.5) before imposition of the
constraints also may be used to recover an estimate of the contact force during
the elimination of the system. (We mean: in such a way that the calculation of
the contact force is coupled with the Gaussian elimination and not performed
during a post-processing step.)

The strategy we have developed to calculate the position of the contact line,
is inspired by the way the position of the contact point of a free surface to a
wall was calculated in two dimensional cases by Vincent Legat in his PHD thesis
[Leg92]. In order to simplify the notations, we first examine how the expression
∫

Γ
ψj · tdΓ may be recovered on one node. We also assume that the node for

which we want to recover the force is the last one; this last assumption does not
involve any loss of generality, because it may be achieved by a renumbering of
the unknowns of the system.

To the governing equations of the problem, we add the equation πfk = 0, in
which fk is the nodal value that represents the resulting force on node k we are
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looking for, and π is an arbitrary parameter, but sufficiently large (this point
will be discussed later). The system of equations we are solving looks like
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. (C.7)

The Aij elements represent the momentum equation. We only have represented
a small part of the matrix in order to simplify the notations.

Now we add the constraints vk = fk to the system. After the line operation,
we have
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, (C.8)

and after the column operation
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. (C.9)

Finally, the constrained variables are eliminated from the system, and we
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solve
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(C.10)

After convergence, fk satisfies the relations

πfku = −rku,
πfkv = −rkv ,
πfkw = −rkw.

It is clear that for a very large parameter π, fk tends towards zero, and the same
is true for vk. Thus, by increasing π the solution tends to what is obtained
when a vanishing Dirichlet boundary condition is imposed to vk. We have seen
in section C.1.1 that in such circumstances, after convergence, rk contains the
resultant of the force imposed by the fluid on the boundary. Thus for large
values of π, fk and vk become proportional to the contact force in the area of
the node.

Actually, by introducing a penalty equation for the nodal force and a con-
straint for the velocity, we introduce a sort of slip condition at the node. But
we have not the assurance yet that the component of fk normal to the sur-
face vanishes (and in fact the normal component does not vanish). In order to
compensate that component, we had a new unknown fnk to the problem. This
unknown is the Lagrange multiplier of the contraint on the normal component
to the surface.

C.1.3 Implementation of the line dynamic condition

For the implementation of the line dynamic condition, we use the method derived
of what is presented in section C.1.2. Along the walls, Dirichlet Boundary
conditions of the type v = 0 are imposed with a BEVAXS card. Along the
contact line, we integrate the equation πf l = 0, where f l is the field in which
we try to recover the contact force between the fluids and the wall.

We want this contact force to be tangent to the cylindrical surface. Thus
we want to compensate the radial component of f l by applying a lineic radial
force fr on the contact line. This radial force is the Lagrange multiplier of the
constraint on the radial component of f l. Thus the equations added to the
system are

πf l + fr = 0,

f · r(x, y) = 0.

The first part of the equation is vectorial. The second part is a scalar constraint.
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The vector r is a radial unit vector defined as

r(x, y) =
(x, y, 0)

T

x2 + y2
.

Thus we take the cylindrical form of the die into account for the mathematical
formulation. In our problem, no variable corresponds to field r(x, y). The
constraint on f l is directly expressed as a function of the coordinates x and y.

Now we add the constraint vl = fl along the constact line with a CTRRHS

card. The constraint is such that a linear combination is done with the previous
constraints on the velocity field (i.e. v = 0 with the BEVAXS card). The new
constraint added to the velocity unknowns is such that it is added to the old
constraint v = 0. Thus we have vl = 0 for all nodes of the walls that are not
on the contact line, and vl = fl for all nodes pertaining to the constact line.

After convergence of the Newton-Raphson iterations, the field vl = fl is
proportional to the tangential component of the contact force along the wall,
but very small. Actually, we have introduced a sort of slip along the walls, but
only on the contact line.

Nothing more has to be done to obtain the motion of the contact line for the
line kinematic condition is defined on the whole interface, and the contact lines
belongs to this interface.

Some additional comments

Normally, it would have been possible to express the constraint with a vector n
normal to the wall, and it may be a good method to use for a complex geometry.
But two problems have to be solved in order to use the normal vector instead
of the radial one:

1. The normal vector has to be calculated on a surface, thus on the wall.
That means that an additional field has to be defined on the boundary
corresponding to the walls in the area of the contact line, and a problem
must be solved to calculate the normal in that area. This results in an
increase of the computational cost.

2. The calculation of the normal is very sensitive to the motion of the mesh
when this mesh is too coarse. The computational cost of our calculations
is very high, and the use of a refined mesh involves a prohibitive cost.

As a conclusion, we can say that the use of the radial vector is easy to implement,
cheap, and well adapted to our peculiar problem. For complicated geometries,
an additional description of the dependence of the normal on the coordinates
should be given in one or other way.
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Appendix D

More information on

molecular effects

D.1 Fit with the sum of two exponentials

We try to fit the relaxation curve corresponding to tstop = 1.2350 s in figure 5.5
by a least square method. The fit function is

f(t) = A exp(−t/a) +B exp(−t/b).

We use a reinterpolation technique to calculate the value of the tension σzz
every ∆tsampling seconds. For our calculations, we consider that the force is
measured every 0.01 s. The relaxation curve is fitted between tstop+∆tstop and
tend = 2 s. We try to find A, a, B and b that minimize the residue

R(A, a,B, b) =
n
∑

i=1

{

log (A exp(−ti/a) +B exp(−ti/b))− log
(

σizz(ti)
)}2

,

in which n is the number of data points.
To minimize R(A, a,B, b), we must solve a nonlinear system of equations, A,

a, B and b being the unknowns. The system is solved with a Newton-Raphson
algorithm.

D.2 Identification of a viscous stress

What we try to do here, is to “simulate” the identification of the viscous and
elastic parts of the tensile stress with the method of Orr and Sridhar. For
each simulation, we select an initial value of the solution on the extension curve
in figure 5.5. Then, we calculate the relaxation of the tension by a numerical
integration of the constitutive equations. During the relaxation, the stretch rate
as a function of time is given by (5.4).
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The time integration is done until tend = tstop + ∆tstab, in which ∆tstab
is the interval of time necessary to obtain a fit function f close to the data
points. (In most calculations, we use ∆tstab = 0.15 s). We assume that for t
between tstop+∆tstop and tstop+∆tstab, the stress decreases exponentially. We
use this assumption to reinterpolate the stress back from t = tstop + ∆tstab to
t = tstop +∆tstop. The value obtained by this calculation is assumed to be the
elastic portion of the stress σelastzz (tstop. The viscous part of the tensile stress is
then given by σvisczz (tstop) = σzz(tstop)− σelastzz (tstop).

The method we use to determine σelastzz and σvisczz only approximates the
method of Orr and Sridhar. However, it is a sufficiently good approximation for
our purpose.

D.2.1 Transient viscous and elastic stresses

We can use the procedure described above to estimate the viscous and elastic
contributions to the tensile stress during the stretching. We present the results
obtained for fluid “B” at stretch rates ε̇ = 2.1 s−1 and ε̇ = 3.0 s−1 respectively
in figures D.1 and D.2.
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Figure D.1: Separation between the elastic and viscous contributions to the ten-
sile stress in the filament. The fluid “B” is used for the calculation and the
strain rate is ε̇ = 2.1 s−1. To estimate the elastic contribution, we use the linear
reinterpolation with ∆tstop = 0.05 s and ∆tstab = 0.15 s.

For small values of the deformation, the tensile stress is dominated by the
solvent contribution. For Hencky strains larger than 1.5 the elastic and viscous
parts of the polymer contribution dominate. Close to the horizontal plateau,
the viscous polymer contribution becomes larger than the elastic polymer part
of the tensile stress. The comparison of figures D.1 and D.2 also shows that the
viscous polymer part increases with the strain rate, while the elastic part does
not seem to depend on ε̇.
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Figure D.2: Separation between the elastic and viscous contributions to the ten-
sile stress in the filament. The fluid “B” is used for the calculation and the
strain rate is ε̇ = 3 s−1. To estimate the elastic contribution, we use the linear
reinterpolation with ∆tstop = 0.05 s and ∆tstab = 0.15 s.

Thos results are in qualitative agreement with the results of Orr and Sridhar.

D.3 Origin of the hysteretic behaviour

To better understand how dispersion can generate hysteresis, we first show that
the combination of the FENE stress law and of a dispersion of the extension of
the molecules leads to an increase of the mean value of the stress. To simplify
the explanation, we make the following simplifications:

1. We assume that a simple relation exists between Azz and σzz. Though
we know that actually Axx and Ayy also influence the value of the axial
component of the stress, this assumption will not change the conclusions
of our explanation.

2. We represent the dispersion of the extension of the molecules with a dis-
tribution function WA(Azz). This function is such that

∫ ∞

0

WA(Azz)dAzz = 1, (D.1)

and gives the probability to find and extension equal to Azz.

With the simplifications presented here above, the relation between σzz and
Azz may be represented by a growing curve with concavity oriented towards
the positive values of σzz (figure D.3). The Azz distribution is represented on
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the lower part of the same figure with a bell shaped function. Let us define the
mean value of the extension of the molecules:

< Azz >
4
=

∫ ∞

0

AzzWA(Azz)dAzz. (D.2)

Note that a tension distribution Wσ(σzz) similar to the extension distribution
WA(Azz) may be defined. We also may calculate a mean value < σzz > of the
tension with a formula similar to (D.2).

Besides the FENE stress-extension relation, we define an “affine” relation
between stress and extension by

σaffinezz (Azz) = αAzz + β, (D.3)

in which α and β are selected in such a way that the FENE and affine stress
functions have identical value and derivative for Azz =< Azz > (figure D.3).

=< σaffinezz >

L2

Azz

σaffinezz (Azz)

σFENEzz (Azz)

σzz

< σFENEzz >

< Azz >

σFENEzz (< Azz >)

Figure D.3: Relations between the mean values of σzz and Azz when a nonlinear
model is used, and dispersion is present.

Now let us compare the tension distributions corresponding to WA(Azz) and
obtained with the affine and FENE stress laws repsectively:

• Because of the affine character of the stress law, the affine tension dis-
tribution W affine

σ (σzz) simply is an affine transformation of the extension
distribution. Consequently, the mean value of the affine tension is equal
to the affine tension corresponding to the mean value of the extension:
< σaffinezz >= σaffinezz (< Azz >); because of the peculiar way we construct
the affine stress law, we also have < σaffinezz >= σFENEzz (< Azz >).

• For the peculiar value of < Azz >, we have σaffinezz (< Azz >) = σFENEzz (<
Azz >). But it easily can be seen on figure D.3, that for all other values
of Azz, the FENE stress law gives larger values of the tension than the
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affine stress law. Consequently, the mean value < σFENEzz > will be larger
than < σaffinezz >. Therefore, we always have the relation

< σFENEzz >≥ σFENEzz (< Azz >). (D.4)

There is only one case for which we have equality: when all molecules have
the same extension and the distribution reduces to a Dirac function.

Inequality (D.4) is a consequence of the dispersion of the Azz distribution
and of the fact that FENE stress law has a concavity oriented towards the
positive values of σzz.

During the stretching, the dispersion of extension is important, and we have
the relation

< σzz >> σzz(< Azz >).

At the end of the stretching, (at least partial) saturation occurs, and the ex-
tension distribution gathers in a Dirac function. The distribution more or less
keeps the shape of a Dirac function during relaxation. Thus for a given value
of < Azz >, we have a larger value of the tension during extension that dur-
ing relaxation. This explains the hysteretic behaviour and why it always turn
clockwise.
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tridimensionnels à surfaces libres. PhD thesis, 1992. ix, 21, 43,
198, 212

[LHJ+97] G. Lielens, P. Halin, I. Jaumain, R. Keunings, and V. Legat. New
closure approximations for the kinetic theory of finitely extensible
dumbbells,. J. Non-Newtonian Fluid Mech., in press 1997. 147,
187, 189, 191, 193

[LKLon] G. Lielens, R. Keunings, and V. Legat. Evaluation of the FENE-L
model in three-dimensional flow fields,. in preparation. 147, 189,
191
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